enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).

  3. Euler–Maruyama method - Wikipedia

    en.wikipedia.org/wiki/Euler–Maruyama_method

    In Itô calculus, the Euler–Maruyama method (also simply called the Euler method) is a method for the approximate numerical solution of a stochastic differential equation (SDE). It is an extension of the Euler method for ordinary differential equations to stochastic differential equations named after Leonhard Euler and Gisiro Maruyama. The ...

  4. Ordinary differential equation - Wikipedia

    en.wikipedia.org/wiki/Ordinary_differential_equation

    In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable.As with other DE, its unknown(s) consists of one (or more) function(s) and involves the derivatives of those functions. [1]

  5. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    Relaxation methods are used to solve the linear equations resulting from a discretization of the differential equation, for example by finite differences. [ 2 ] [ 3 ] [ 4 ] Iterative relaxation of solutions is commonly dubbed smoothing because with certain equations, such as Laplace's equation , it resembles repeated application of a local ...

  6. Spectral method - Wikipedia

    en.wikipedia.org/wiki/Spectral_method

    Here we presume an understanding of basic multivariate calculus and Fourier series.If (,) is a known, complex-valued function of two real variables, and g is periodic in x and y (that is, (,) = (+,) = (, +)) then we are interested in finding a function f(x,y) so that

  7. Frobenius method - Wikipedia

    en.wikipedia.org/wiki/Frobenius_method

    Some solutions of a differential equation having a regular singular point with indicial roots = and .. In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form ″ + ′ + = with ′ and ″.

  8. Multigrid method - Wikipedia

    en.wikipedia.org/wiki/Multigrid_method

    Multigrid methods can be generalized in many different ways. They can be applied naturally in a time-stepping solution of parabolic partial differential equations, or they can be applied directly to time-dependent partial differential equations. [12] Research on multilevel techniques for hyperbolic partial differential equations is underway. [13]

  9. Central differencing scheme - Wikipedia

    en.wikipedia.org/wiki/Central_differencing_scheme

    The right side of the convection-diffusion equation, which basically highlights the diffusion terms, can be represented using central difference approximation. To simplify the solution and analysis, linear interpolation can be used logically to compute the cell face values for the left side of this equation, which is nothing but the convective ...