Search results
Results from the WOW.Com Content Network
# set terminal svg enhanced size 875 1250 fname "Times" fsize 25 set terminal postscript enhanced portrait dashed lw 1 "Helvetica" 14 set output "bode.ps" # ugly part of something G(w,n) = 0 * w * n + 100000 # 1 / (sqrt(1 + w**(2*n))) dB(x) = 0 + x + 100000 # 20 * log10(abs(x)) P(w) = w * 0 + 200 # -atan(w)*180/pi # Gridlines set grid # Set x axis to logarithmic scale set logscale x 10 set ...
It is usually a combination of a Bode magnitude plot, expressing the magnitude (usually in decibels) of the frequency response, and a Bode phase plot, expressing the phase shift. As originally conceived by Hendrik Wade Bode in the 1930s, the plot is an asymptotic approximation of the frequency response, using straight line segments .
Print/export Download as PDF; Printable version; In other projects Appearance. ... Redirect page. Redirect to: Bode plot; Retrieved from "https: ...
A Campbell diagram plot represents a system's response spectrum as a function of its oscillation regime. It is named for Wilfred Campbell, who introduced the concept. [1] [2] It is also called an interference diagram. [3]
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
In electronics, cutoff frequency or corner frequency is the frequency either above or below which the power output of a circuit, such as a line, amplifier, or electronic filter has fallen to a given proportion of the power in the passband.
I apologize for the double post here, but I think the second example is a little wordy and confusing. What exactly is the transfer function here? Could something like (s-z)/(s-p) do the trick here? I am having trouble connecting the images and plots to the concept of the Bode plot. Anyone with more knowledge than I should take some initiative ...
The Warburg diffusion element (Z W) is a constant phase element (CPE), with a constant phase of 45° (phase independent of frequency) and with a magnitude inversely proportional to the square root of the frequency by: