Search results
Results from the WOW.Com Content Network
X-ray optics is the branch of optics dealing with X-rays, rather than visible light.It deals with focusing and other ways of manipulating the X-ray beams for research techniques such as X-ray diffraction, X-ray crystallography, X-ray fluorescence, small-angle X-ray scattering, X-ray microscopy, X-ray phase-contrast imaging, and X-ray astronomy.
X-ray reflectivity (sometimes known as X-ray specular reflectivity, X-ray reflectometry, or XRR) is a surface-sensitive analytical technique used in chemistry, physics, and materials science to characterize surfaces, thin films and multilayers.
Early X-ray microscopes by Paul Kirkpatrick and Albert Baez used grazing-incidence reflective X-ray optics to focus the X-rays, which grazed X-rays off parabolic curved mirrors at a very high angle of incidence. An alternative method of focusing X-rays is to use a tiny Fresnel zone plate of concentric gold or nickel rings on a silicon dioxide ...
X-ray mirrors can be built, but only if the angle from the plane of reflection is very low (typically 10 arc-minutes to 2 degrees). [2] These are called glancing (or grazing ) incidence mirrors . In 1952, Hans Wolter outlined three ways a telescope could be built using only this kind of mirror.
It is named after Paul Kirkpatrick and Albert Baez, the inventors of the X-ray microscope. [1] Although X-rays can be focused by compound refractive lenses, these also reduce the intensity of the beam and are therefore undesirable. KB mirrors, on the other hand, can focus beams to small spot sizes with minimal loss of intensity.
The angle of incidence, in geometric optics, is the angle between a ray incident on a surface and the line perpendicular (at 90 degree angle) to the surface at the point of incidence, called the normal. The ray can be formed by any waves, such as optical, acoustic, microwave, and X-ray. In the figure below, the line representing a ray makes an ...
XM-1 uses an X-ray lens to focus X-rays on a CCD, in a manner similar to an optical microscope. XM-1 held the world record in spatial resolution with Fresnel zone plates down to 15 nm and is able to combine high spatial resolution with a sub-100ps time resolution to study e.g. ultrafast spin dynamics.
Propagation of a ray through a layer. The transfer-matrix method is a method used in optics and acoustics to analyze the propagation of electromagnetic or acoustic waves through a stratified medium; a stack of thin films. [1] [2] This is, for example, relevant for the design of anti-reflective coatings and dielectric mirrors.