Search results
Results from the WOW.Com Content Network
In computational fluid dynamics, the MacCormack method (/məˈkɔːrmæk ˈmɛθəd/) is a widely used discretization scheme for the numerical solution of hyperbolic partial differential equations. This second-order finite difference method was introduced by Robert W. MacCormack in 1969. [ 1 ]
Matlab / Octave Bindings to language: Full API for Java and Matlab (the latter via add-on product) PyMFEM (Python) Python, Scilab or Matlab Python bindings to some functionality Python Other: Predefined equations: Yes, many predefined physics and multiphysics interfaces in COMSOL Multiphysics and its add-ons.
For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).
FEATool Multiphysics is a fully integrated physics and PDE simulation environment where the modeling process is subdivided into six steps; preprocessing (CAD and geometry modeling), mesh and grid generation, physics and PDE specification, boundary condition specification, solution, and postprocessing and visualization.
It is a declarative and visual programming language based on influence diagrams. FlexPro is a program for data analysis and presentation of measurement data. It provides a rich Excel-like user interface and its built-in vector programming language FPScript has a syntax similar to MATLAB. FreeMat, an open-source MATLAB-like environment with a ...
A finite difference is a mathematical expression of the form f (x + b) − f (x + a).If a finite difference is divided by b − a, one gets a difference quotient.The approximation of derivatives by finite differences plays a central role in finite difference methods for the numerical solution of differential equations, especially boundary value problems.
The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations.
The following pseudocode in MATLAB style demonstrates Richardson extrapolation to help solve the ODE ′ =, () = with the Trapezoidal method. In this example we halve the step size h {\displaystyle h} each iteration and so in the discussion above we'd have that t = 2 {\displaystyle t=2} .