Search results
Results from the WOW.Com Content Network
Relationship of the atmosphere and ionosphere. The ionosphere (/ aɪ ˈ ɒ n ə ˌ s f ɪər /) [1] [2] is the ionized part of the upper atmosphere of Earth, from about 48 km (30 mi) to 965 km (600 mi) above sea level, [3] a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar ...
The F-region is the highest region of the ionosphere. Consisting of the F1 and F2 layers, its distance above the Earth's surface is approximately 200–500 km. [7] The duration of these storms are around a day and reoccur every approximately 27.3 days. [6] Most ionospheric abnormalities occur in the F2 and E layers of the ionosphere.
By comparison, the International Space Station and Space Shuttle typically orbit at 350–400 km, within the F-layer of the ionosphere, where they encounter enough atmospheric drag to require reboosts every few months, otherwise orbital decay will occur, resulting in a return to Earth. Depending on solar activity, satellites can experience ...
Weather Underground uses observations from over 250,000 personal weather stations worldwide. [22] The Weather Underground's WunderMap overlays weather data from personal weather stations and official National Weather Service stations on a Mapbox Map base and provides many interactive and dynamically updated weather and environmental layers. [23]
Observations from GOLD show charged particles forming an X shape in the ionosphere on October 7, 2019. - F. Laskar et al.
Space weather effects. Space weather is a branch of space physics and aeronomy, or heliophysics, concerned with the varying conditions within the Solar System and its heliosphere. This includes the effects of the solar wind, especially on the Earth's magnetosphere, ionosphere, thermosphere, and exosphere. [1]
SpaceX’s rocket explosion in November 2023 created a massive hole in the Earth's ionosphere, providing scientists with a rare opportunity to study its effects.
First, GOLD observations showed that even weak or minor geomagnetic activity (maximum Kp=1.7) can still generate significant disturbances in the thermosphere and ionosphere. This is crucial for space weather forecasting because the pre-quiet condition before the disturbed time determines the accuracy of the forecast.