Search results
Results from the WOW.Com Content Network
Homogeneity and heterogeneity; only ' b ' is homogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image.A homogeneous feature is uniform in composition or character (i.e. color, shape, size, weight, height, distribution, texture, language, income, disease, temperature, radioactivity, architectural design, etc.); one that is heterogeneous ...
Homogeneity can be studied to several degrees of complexity. For example, considerations of homoscedasticity examine how much the variability of data-values changes throughout a dataset. However, questions of homogeneity apply to all aspects of the statistical distributions, including the location parameter
In chemistry, the dispersity is a measure of the heterogeneity of sizes of molecules or particles in a mixture. A collection of objects is called uniform if the objects have the same size, shape, or mass. A sample of objects that have an inconsistent size, shape and mass distribution is called non-uniform.
For example, "is a blood relative of" is a symmetric relation, because x is a blood relative of y if and only if y is a blood relative of x. Antisymmetric for all x, y ∈ X, if xRy and yRx then x = y. For example, ≥ is an antisymmetric relation; so is >, but vacuously (the condition in the definition is always false). [11] Asymmetric
The heterogeneity variance is commonly denoted by τ², or the standard deviation (its square root) by τ. Heterogeneity is probably most readily interpretable in terms of τ, as this is the heterogeneity distribution's scale parameter, which is measured in the same units as the overall effect itself. [18]
For example, + + is a homogeneous polynomial of degree 5, in two variables; the sum of the exponents in each term is always 5. The polynomial x 3 + 3 x 2 y + z 7 {\displaystyle x^{3}+3x^{2}y+z^{7}} is not homogeneous, because the sum of exponents does not match from term to term.
A system of equations is a set of simultaneous equations, usually in several unknowns for which the common solutions are sought. Thus, a solution to the system is a set of values for each of the unknowns, which together form a solution to each equation in the system. For example, the system
A linear differential equation that fails this condition is called inhomogeneous. A linear differential equation can be represented as a linear operator acting on y(x) where x is usually the independent variable and y is the dependent variable. Therefore, the general form of a linear homogeneous differential equation is =