Search results
Results from the WOW.Com Content Network
Function: Amylase is an enzyme that is responsible for the breaking of the bonds in starches, polysaccharides, and complex carbohydrates to be turned into simple sugars that will be easier to absorb. Clinical Significance: Amylase also has medical history in the use of Pancreatic Enzyme Replacement Therapy (PERT). One of the components is ...
This article contains a list of restriction enzymes whose names start with A and have a clearly defined cutting site. The following information is given for each enzyme: Name of Restriction Enzyme: Accepted name of the molecule, according to the internationally adopted nomenclature, [1] [2] and bibliographical references. Note: When ...
A restriction map is a map of known restriction sites within a sequence of DNA.Restriction mapping requires the use of restriction enzymes.In molecular biology, restriction maps are used as a reference to engineer plasmids or other relatively short pieces of DNA, and sometimes for longer genomic DNA.
Restriction digest is most commonly used as part of the process of the molecular cloning of DNA fragment into a vector (such as a cloning vector or an expression vector).The vector typically contains a multiple cloning site where many restriction site may be found, and a foreign piece of DNA may be inserted into the vector by first cutting the restriction sites in the vector as well the DNA ...
The Enzyme Commission number (EC number) is a numerical classification scheme for enzymes, based on the chemical reactions they catalyze. [1] As a system of enzyme nomenclature, every EC number is associated with a recommended name for the corresponding enzyme-catalyzed reaction. EC numbers do not specify enzymes but enzyme-catalyzed reactions.
[2] [3] The mRNA sequence is determined by the sequence of genomic DNA. [4] In this context, the standard genetic code is referred to as translation table 1. [3] It can also be represented in a DNA codon table. The DNA codons in such tables occur on the sense DNA strand and are arranged in a 5 ′-to-3 ′ direction.
The branched DNA binds to the sample nucleic acid by specific hybridization in areas which are not occupied by capture hybrids. The branching of the DNA allows for very dense decorating of the DNA with the enzyme, which is important for the high sensitivity of the assay [citation needed]. The enzyme catalyzes a reaction of a substrate which ...
The enzyme's recognition site—the place where it cuts DNA molecules—is the GGCC nucleotide sequence which means it cleaves DNA at the site 5′-GG/CC-3. The recognition site is usually around 4-8 bps [1].This enzyme's gene has been sequenced and cloned. This is done to make DNA fragments in blunt ends.