Search results
Results from the WOW.Com Content Network
Concerning general linear maps, linear endomorphisms, and square matrices have some specific properties that make their study an important part of linear algebra, which is used in many parts of mathematics, including geometric transformations, coordinate changes, quadratic forms, and many other parts of mathematics.
A multiplicative character (or linear character, or simply character) on a group G is a group homomorphism from G to the multiplicative group of a field , usually the field of complex numbers. If G is any group, then the set Ch( G ) of these morphisms forms an abelian group under pointwise multiplication.
This is an outline of topics related to linear algebra, the branch of mathematics concerning linear equations and linear maps and their representations in vector spaces and through matrices. Linear equations
Linear algebra is the branch of mathematics concerned with the study of vectors, vector spaces (also called linear spaces), linear maps (also called linear transformations), and systems of linear equations. Vector spaces are a central theme in modern mathematics; thus, linear algebra is widely used in both abstract algebra and functional analysis.
A character χ ρ is called irreducible or simple if ρ is an irreducible representation. The degree of the character χ is the dimension of ρ; in characteristic zero this is equal to the value χ(1). A character of degree 1 is called linear. When G is finite and F has characteristic zero, the kernel of the character χ ρ is the normal subgroup:
This glossary of linear algebra is a list of definitions and terms relevant to the field of linear algebra, the branch of mathematics concerned with linear equations and their representations as vector spaces. For a glossary related to the generalization of vector spaces through modules, see glossary of module theory
For many problems in applied linear algebra, it is useful to adopt the perspective of a matrix as being a concatenation of column vectors. For example, when solving the linear system =, rather than understanding x as the product of with b, it is helpful to think of x as the vector of coefficients in the linear expansion of b in the basis formed by the columns of A.
For a linear algebraic group G over the real numbers R, the group of real points G(R) is a Lie group, essentially because real polynomials, which describe the multiplication on G, are smooth functions. Likewise, for a linear algebraic group G over C, G(C) is a complex Lie group. Much of the theory of algebraic groups was developed by analogy ...