Search results
Results from the WOW.Com Content Network
A set is a basis if its rank equals both its cardinality and the rank of the matroid. [3] A set is closed if it is maximal for its rank, in the sense that there does not exist another element that can be added to it while maintaining the same rank. The difference | | is called the nullity of the subset .
Rank–nullity theorem. The rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and; the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the image of f) and the nullity of f (the dimension of ...
The dimension of the row space is called the rank of the matrix. This is the same as the maximum number of linearly independent rows that can be chosen from the matrix, or equivalently the number of pivots. For example, the 3 × 3 matrix in the example above has rank two. [9] The rank of a matrix is also equal to the dimension of the column space.
A fundamental result in linear algebra is that the column rank and the row rank are always equal. (Three proofs of this result are given in § Proofs that column rank = row rank, below.) This number (i.e., the number of linearly independent rows or columns) is simply called the rank of A.
A row consists of a, a q, a q², etc., and each row uses a different variable. Nonnegative matrix: A matrix with all nonnegative entries. Null-symmetric matrix A square matrix whose null space (or kernel) is equal to its transpose, N(A) = N(A T) or ker(A) = ker(A T). Synonym for kernel-symmetric matrices.
The nullity of M is given by m − n + c, where, c is the number of components of the graph and n − c is the rank of the oriented incidence matrix. This name is rarely used; the number is more commonly known as the cycle rank, cyclomatic number, or circuit rank of the graph. It is equal to the rank of the cographic matroid of the graph.
A matrix with the same number of rows and columns is called a square matrix. [5] A matrix with an infinite number of rows or columns (or both) is called an infinite matrix. In some contexts, such as computer algebra programs, it is useful to consider a matrix with no rows or no columns, called an empty matrix.
The kernel of a matrix, also called the null space, is the kernel of the linear map defined by the matrix. The kernel of a homomorphism is reduced to 0 (or 1) if and only if the homomorphism is injective, that is if the inverse image of every element consists of a single element. This means that the kernel can be viewed as a measure of the ...