enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Residual sum of squares - Wikipedia

    en.wikipedia.org/wiki/Residual_sum_of_squares

    The general regression model with n observations and k explanators, the first of which is a constant unit vector whose coefficient is the regression intercept, is = + where y is an n × 1 vector of dependent variable observations, each column of the n × k matrix X is a vector of observations on one of the k explanators, is a k × 1 vector of true coefficients, and e is an n× 1 vector of the ...

  3. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    Sum of squares of residuals (SSR) is the sum of the squares of the deviations of the actual values from the predicted values, within the sample used for estimation. This is the basis for the least squares estimate, where the regression coefficients are chosen such that the SSR is minimal (i.e. its derivative is zero).

  4. PRESS statistic - Wikipedia

    en.wikipedia.org/wiki/PRESS_statistic

    It is calculated as the sum of squares of the prediction residuals for those observations. [ 1 ] [ 2 ] [ 3 ] Specifically, the PRESS statistic is an exhaustive form of cross-validation , as it tests all the possible ways that the original data can be divided into a training and a validation set.

  5. Lack-of-fit sum of squares - Wikipedia

    en.wikipedia.org/wiki/Lack-of-fit_sum_of_squares

    To have a lack-of-fit sum of squares that differs from the residual sum of squares, one must observe more than one y-value for each of one or more of the x-values. One then partitions the "sum of squares due to error", i.e., the sum of squares of residuals, into two components:

  6. Mean squared prediction error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_prediction_error

    When the model has been estimated over all available data with none held back, the MSPE of the model over the entire population of mostly unobserved data can be estimated as follows.

  7. Deviance (statistics) - Wikipedia

    en.wikipedia.org/wiki/Deviance_(statistics)

    In statistics, deviance is a goodness-of-fit statistic for a statistical model; it is often used for statistical hypothesis testing.It is a generalization of the idea of using the sum of squares of residuals (SSR) in ordinary least squares to cases where model-fitting is achieved by maximum likelihood.

  8. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    The step size is denoted by (sometimes called the learning rate in machine learning) and here ":=" denotes the update of a variable in the algorithm. In many cases, the summand functions have a simple form that enables inexpensive evaluations of the sum-function and the sum gradient.

  9. Explained sum of squares - Wikipedia

    en.wikipedia.org/wiki/Explained_sum_of_squares

    The explained sum of squares (ESS) is the sum of the squares of the deviations of the predicted values from the mean value of a response variable, in a standard regression model — for example, y i = a + b 1 x 1i + b 2 x 2i + ... + ε i, where y i is the i th observation of the response variable, x ji is the i th observation of the j th ...