Search results
Results from the WOW.Com Content Network
Exterior angle – The exterior angle is the supplementary angle to the interior angle. Tracing around a convex n -gon, the angle "turned" at a corner is the exterior or external angle. Tracing all the way around the polygon makes one full turn , so the sum of the exterior angles must be 360°.
As the number of sides increases, the internal angle can come very close to 180°, and the shape of the polygon approaches that of a circle. However the polygon can never become a circle. The value of the internal angle can never become exactly equal to 180°, as the circumference would effectively become a straight line (see apeirogon). For ...
A pentagon is a five-sided polygon. A regular pentagon has 5 equal edges and 5 equal angles. In geometry, a polygon is traditionally a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain.
The internal angle of a simple polygon, at one of its vertices, is the angle spanned by the interior of the polygon at that vertex. A vertex is convex if its internal angle is less than (a straight angle, 180°) and concave if the internal angle is greater than .
A rectangle is a rectilinear polygon: its sides meet at right angles. A rectangle in the plane can be defined by five independent degrees of freedom consisting, for example, of three for position (comprising two of translation and one of rotation), one for shape (aspect ratio), and one for overall size (area).
A regular hexadecagon is a hexadecagon in which all angles are equal and all sides are congruent. Its Schläfli symbol is {16} and can be constructed as a truncated octagon , t{8}, and a twice-truncated square tt{4}.
In geometry, a hendecagon (also undecagon [1] [2] or endecagon [3]) or 11-gon is an eleven-sided polygon. (The name hendecagon , from Greek hendeka "eleven" and –gon "corner", is often preferred to the hybrid undecagon , whose first part is formed from Latin undecim "eleven".
A polytope is a geometric object with flat sides, which exists in any general number of dimensions. The following list of polygons, polyhedra and polytopes gives the names of various classes of polytopes and lists some specific examples.