Search results
Results from the WOW.Com Content Network
Riemann integral. The integral as the area of a region under a curve. A sequence of Riemann sums over a regular partition of an interval. The number on top is the total area of the rectangles, which converges to the integral of the function. The partition does not need to be regular, as shown here.
Upper and lower methods make the approximation using the largest and smallest endpoint values of each subinterval, respectively. The values of the sums converge as the subintervals halve from top-left to bottom-right. In mathematics, a Riemann sum is a certain kind of approximation of an integral by a finite sum.
A partition of an interval being used in a Riemann sum. The partition itself is shown in grey at the bottom, with the norm of the partition indicated in red. In mathematics, a partition of an interval [a, b] on the real line is a finite sequence x0, x1, x2, …, xn of real numbers such that. a = x0 < x1 < x2 < … < xn = b.
The trapezoidal rule may be viewed as the result obtained by averaging the left and right Riemann sums, and is sometimes defined this way. The integral can be even better approximated by partitioning the integration interval, applying the trapezoidal rule to each subinterval, and summing the results. In practice, this "chained" (or "composite ...
The Weyl tensor has the same basic symmetries as the Riemann tensor, but its 'analogue' of the Ricci tensor is zero: = = = = The Ricci tensor, the Einstein tensor, and the traceless Ricci tensor are symmetric 2-tensors:
Lebesgue–Stieltjes integrals, named for Henri Leon Lebesgue and Thomas Joannes Stieltjes, are also known as Lebesgue–Radon integrals or just Radon integrals, after Johann Radon, to whom much of the theory is due. They find common application in probability and stochastic processes, and in certain branches of analysis including potential theory.
Discrete calculus or the calculus of discrete functions, is the mathematical study of incremental change, in the same way that geometry is the study of shape and algebra is the study of generalizations of arithmetic operations. The word calculus is a Latin word, meaning originally "small pebble"; as such pebbles were used for calculation, the ...
The Riemann–Stieltjes integral admits integration by parts in the form () = () () ()and the existence of either integral implies the existence of the other. [2]On the other hand, a classical result [3] shows that the integral is well-defined if f is α-Hölder continuous and g is β-Hölder continuous with α + β > 1 .