Search results
Results from the WOW.Com Content Network
The solutions of this equation are called roots of the cubic function defined by the left-hand side of the equation. If all of the coefficients a , b , c , and d of the cubic equation are real numbers , then it has at least one real root (this is true for all odd-degree polynomial functions ).
The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.
In either case the full quartic can then be divided by the factor (x − 1) or (x + 1) respectively yielding a new cubic polynomial, which can be solved to find the quartic's other roots. If a 1 = a 0 k , {\displaystyle \ a_{1}=a_{0}k\ ,} a 2 = 0 {\displaystyle \ a_{2}=0\ } and a 4 = a 3 k , {\displaystyle \ a_{4}=a_{3}k\ ,} then x = − k ...
If the approximate ratio of two factors (/) is known, then a rational number / can be picked near that value. N u v = c v ⋅ d u {\displaystyle Nuv=cv\cdot du} , and Fermat's method, applied to Nuv , will find the factors c v {\displaystyle cv} and d u {\displaystyle du} quickly.
Assume that two cubics C 1 and C 2 in the projective plane meet in nine (different) points, as they do in general over an algebraically closed field. Then every cubic that passes through any eight of the points also passes through the ninth point. A more intrinsic form of the Cayley–Bacharach theorem reads as follows:
If two cubics pass through a given set of nine points, then in fact a pencil of cubics does, and the points satisfy additional properties; see Cayley–Bacharach theorem. Singular cubic y 2 = x 2 ⋅ (x + 1). A parametrization is given by t ↦ (t 2 – 1, t ⋅ (t 2 – 1)).
Scipione del Ferro was born in Bologna, in northern Italy, to Floriano and Filippa Ferro.His father, Floriano, worked in the paper industry, which owed its existence to the invention of the press in the 1450s and which probably allowed Scipione to access various works during the early stages of his life.
A central feature of smooth cubic surfaces X over an algebraically closed field is that they are all rational, as shown by Alfred Clebsch in 1866. [1] That is, there is a one-to-one correspondence defined by rational functions between the projective plane minus a lower-dimensional subset and X minus a lower-dimensional subset.