Search results
Results from the WOW.Com Content Network
Example of a spent fuel pool from the shut-down Caorso Nuclear Power Plant. This pool is not holding large amounts of material. Spent fuel pools (SFP) are storage pools (or "ponds" in the United Kingdom) for spent fuel from nuclear reactors. They are typically 40 or more feet (12 m) deep, with the bottom 14 feet (4.3 m) equipped with storage ...
The essential service water system (ESWS) circulates the water that cools the plant's heat exchangers and other components before dissipating the heat into the environment. Because this includes cooling the systems that remove decay heat from both the primary system and the spent fuel rod cooling ponds, the ESWS is a safety-critical system. [ 7 ]
The five criteria for ECCS are to prevent peak fuel cladding temperature from exceeding 2200 °F (1204 °C), prevent more than 17% oxidation of the fuel cladding, prevent more than 1% of the maximum theoretical hydrogen generation due the zircalloy metal-water reaction, maintain a coolable geometry, and allow for long-term cooling.
[citation needed] The containment is the fourth and final barrier to radioactive release (part of a nuclear reactor's defence in depth strategy), the first being the fuel ceramic itself, the second being the metal fuel cladding tubes, the third being the reactor vessel and coolant system. [2]
Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor (usually at a nuclear power plant). It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor and, depending on its point along the nuclear fuel cycle , it will have different isotopic ...
The fuel cladding material was a magnesium-zirconium alloy in the UNGG, as opposed to magnesium-aluminium in Magnox. As both claddings react with water, they can be stored in a spent fuel pool only for short periods of time, making short-term reprocessing of fuel essential, which requires heavily shielded facilities.
Passive nuclear safety is a design approach for safety features, implemented in a nuclear reactor, that does not require any active intervention on the part of the operator or electrical/electronic feedback in order to bring the reactor to a safe shutdown state, in the event of a particular type of emergency (usually overheating resulting from a loss of coolant or loss of coolant flow).
Zirconium cladding rapidly reacts with water steam above 1,500 K (1,230 °C). [15] [16] Oxidation of zirconium by water is accompanied by release of hydrogen gas. This oxidation is accelerated at high temperatures, e.g. inside a reactor core if the fuel assemblies are no longer completely covered by liquid water and insufficiently cooled. [17]