Search results
Results from the WOW.Com Content Network
Nevertheless, anatase is often the first titanium dioxide phase to form in many processes due to its lower surface energy, with a transformation to rutile taking place at elevated temperatures. [7] Although the degree of symmetry is the same for both anatase and rutile phases, there is no relation between the interfacial angles of the two ...
Rutile is an oxide mineral composed of titanium dioxide (TiO 2), the most common natural form of TiO 2. Rarer polymorphs of TiO 2 are known, including anatase, akaogiite, and brookite. Rutile has one of the highest refractive indices at visible wavelengths of any known crystal and also exhibits a particularly large birefringence and high ...
Rutile is the next most abundant and contains around 98% titanium dioxide in the ore. The metastable anatase and brookite phases convert irreversibly to the equilibrium rutile phase upon heating above temperatures in the range 600–800 °C (1,110–1,470 °F). [14]
Ultrafine anatase form is precipitated from sulfate solution and ultrafine rutile from chloride solution. In the chloride process, natural or synthetic rutile is chlorinated at temperatures of 850–1000 °C, and the titanium tetrachloride is converted to the ultrafine anatase form by vapor-phase oxidation. [6]: 1–2
Efforts to develop functional photocatalysts often emphasize extending exciton lifetime, improving electron-hole separation using diverse approaches that may rely on structural features such as phase hetero-junctions (e.g. anatase-rutile interfaces), noble-metal nanoparticles, silicon nanowires and substitutional cation doping. [23]
Brookite is rare compared to anatase and rutile and, like these forms, it exhibits photocatalytic activity. [5] Brookite also has a larger cell volume than either anatase or rutile, with 8 TiO 2 groups per unit cell, compared with 4 for anatase and 2 for rutile. [6] Iron (Fe), tantalum (Ta) and niobium (Nb) are common impurities in brookite. [3]
Phase transitions (phase changes) that help describe polymorphism include polymorphic transitions as well as melting and vaporization transitions. According to IUPAC, a polymorphic transition is "A reversible transition of a solid crystalline phase at a certain temperature and pressure (the inversion point) to another phase of the same chemical composition with a different crystal structure."
In biochemistry, the committed step (also known as the first committed step) is an effectively irreversible, enzyme-catalyzed reaction that occurs at a branch point during the biosynthesis of some molecules. [1] [2] As the name implies, after this step, the molecules are "committed" to the pathway and will ultimately end up in the pathway's ...