enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Allosteric enzyme - Wikipedia

    en.wikipedia.org/wiki/Allosteric_enzyme

    The kinetic properties of allosteric enzymes are often explained in terms of a conformational change between a low-activity, low-affinity "tense" or T state and a high-activity, high-affinity "relaxed" or R state. These structurally distinct enzyme forms have been shown to exist in several known allosteric enzymes.

  3. Enzyme kinetics - Wikipedia

    en.wikipedia.org/wiki/Enzyme_kinetics

    Enzyme kinetics is the study of the rates of enzyme-catalysed chemical reactions. In enzyme kinetics, ... cooperative and allosteric enzymes, interfacial and ...

  4. Allosteric regulation - Wikipedia

    en.wikipedia.org/wiki/Allosteric_regulation

    Allosteric regulation of an enzyme. In the fields of biochemistry and pharmacology an allosteric regulator (or allosteric modulator) is a substance that binds to a site on an enzyme or receptor distinct from the active site, resulting in a conformational change that alters the protein's activity, either enhancing or inhibiting its function.

  5. Aspartate carbamoyltransferase - Wikipedia

    en.wikipedia.org/wiki/Aspartate_carbamoyltransferase

    The enzyme is an archetypal example of allosteric modulation of fine control of metabolic enzyme reactions. ATCase does not follow Michaelis–Menten kinetics . Instead, it lies between its low-activity, low-affinity "tense" and its high-activity, high-affinity "relaxed" states. [ 4 ]

  6. Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Michaelis–Menten_kinetics

    A decade before Michaelis and Menten, Victor Henri found that enzyme reactions could be explained by assuming a binding interaction between the enzyme and the substrate. [11] His work was taken up by Michaelis and Menten, who investigated the kinetics of invertase, an enzyme that catalyzes the hydrolysis of sucrose into glucose and fructose. [12]

  7. Monod–Wyman–Changeux model - Wikipedia

    en.wikipedia.org/wiki/Monod–Wyman–Changeux_model

    An allosteric transition of a protein between R and T states, stabilised by an Agonist, an Inhibitor and a Substrate. In biochemistry, the Monod–Wyman–Changeux model (MWC model, also known as the symmetry model or concerted model) describes allosteric transitions of proteins made up of identical subunits.

  8. Non-competitive inhibition - Wikipedia

    en.wikipedia.org/wiki/Non-competitive_inhibition

    The enzyme involved in this reaction is called invertase, and it is the enzyme the kinetics of which have been supported by Michaelis and Menten to be revolutionary for the kinetics of other enzymes. While expressing the rate of the reaction studied, they derived an equation that described the rate in a way which suggested that it is mostly ...

  9. Phosphofructokinase 1 - Wikipedia

    en.wikipedia.org/wiki/Phosphofructokinase_1

    Phosphofructokinase-1 (PFK-1) is one of the most important regulatory enzymes (EC 2.7.1.11) of glycolysis.It is an allosteric enzyme made of 4 subunits and controlled by many activators and inhibitors.