enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. How to Solve It - Wikipedia

    en.wikipedia.org/wiki/How_to_Solve_It

    Use direct reasoning; Solve an equation [14] Also suggested: Look for a pattern [15] Draw a picture [16] Solve a simpler problem [17] Use a model [18] Work backward [19] Use a formula [20] Be creative [21] Applying these rules to devise a plan takes your own skill and judgement. [22] Pólya lays a big emphasis on the teachers' behavior.

  3. Mathematics and Plausible Reasoning - Wikipedia

    en.wikipedia.org/wiki/Mathematics_and_plausible...

    Polya begins Volume I with a discussion on induction, not mathematical induction, but as a way of guessing new results.He shows how the chance observations of a few results of the form 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7, etc., may prompt a sharp mind to formulate the conjecture that every even number greater than 4 can be represented as the sum of two odd prime numbers.

  4. Problems and Theorems in Analysis - Wikipedia

    en.wikipedia.org/wiki/Problems_and_Theorems_in...

    [4]: 23–24 The pair held practice sessions, in which the problems were put to university students and worked through as a class (with some of the representative problems solved by the teacher, and the harder problems set as homework). They went through portions of the book at a rate of about one chapter a semester.

  5. Plausible reasoning - Wikipedia

    en.wikipedia.org/wiki/Plausible_reasoning

    Polya begins Volume I with a discussion on inductive reasoning (not mathematical induction) as a way of guessing new results. He shows how the chance observations of a few results of the form 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7, etc., may prompt a sharp mind to formulate the conjecture that every even number greater than 4 can be ...

  6. All horses are the same color - Wikipedia

    en.wikipedia.org/wiki/All_horses_are_the_same_color

    All horses are the same color is a falsidical paradox that arises from a flawed use of mathematical induction to prove the statement All horses are the same color. [1] There is no actual contradiction, as these arguments have a crucial flaw that makes them incorrect.

  7. George Pólya - Wikipedia

    en.wikipedia.org/wiki/George_Pólya

    George Pólya (/ ˈ p oʊ l j ə /; Hungarian: Pólya György, pronounced [ˈpoːjɒ ˈɟørɟ]; December 13, 1887 – September 7, 1985) was a Hungarian-American mathematician.He was a professor of mathematics from 1914 to 1940 at ETH Zürich and from 1940 to 1953 at Stanford University.

  8. Inventor's paradox - Wikipedia

    en.wikipedia.org/wiki/Inventor's_paradox

    The inventor's paradox is a phenomenon that occurs in seeking a solution to a given problem. Instead of solving a specific type of problem, which would seem intuitively easier, it can be easier to solve a more general problem, which covers the specifics of the sought-after solution.

  9. Backward chaining - Wikipedia

    en.wikipedia.org/wiki/Backward_chaining

    With backward reasoning, an inference engine can determine whether Fritz is green in four steps. To start, the query is phrased as a goal assertion that is to be proven: "Fritz is green". 1. Fritz is substituted for X in rule #3 to see if its consequent matches the goal, so rule #3 becomes: If Fritz is a frog – Then Fritz is green