Search results
Results from the WOW.Com Content Network
The legs of the two right triangles with hypotenuse on the ray defining the angles are of length √ 2 times the circular and hyperbolic functions. The hyperbolic angle is an invariant measure with respect to the squeeze mapping, just as the circular angle is invariant under rotation. [23] The Gudermannian function gives a direct relationship ...
As with other properties shared between the trigonometric functions and the hyperbolic functions, it is possible to use hyperbolic identities to construct a similar form of the substitution, = : sinh x = 2 t 1 − t 2 , cosh x = 1 + t 2 1 − t 2 , and d x = 2 1 − t 2 d t . {\displaystyle \sinh x={\frac {2t}{1-t^{2}}},\quad \cosh x ...
In all the formulas stated below the sides a, b, and c must be measured in absolute length, a unit so that the Gaussian curvature K of the plane is −1. In other words, the quantity R in the paragraph above is supposed to be equal to 1. Trigonometric formulas for hyperbolic triangles depend on the hyperbolic functions sinh, cosh, and tanh.
The argument to the hyperbolic functions is a hyperbolic angle measure. In mathematics, the inverse hyperbolic functions are inverses of the hyperbolic functions, analogous to the inverse circular functions. There are six in common use: inverse hyperbolic sine, inverse hyperbolic cosine, inverse hyperbolic tangent, inverse hyperbolic cosecant ...
CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.
In mathematics, a trigonometric substitution replaces a trigonometric function for another expression. In calculus, trigonometric substitutions are a technique for evaluating integrals. In this case, an expression involving a radical function is replaced with a trigonometric one. Trigonometric identities may help simplify the answer.
The following is a list of integrals (anti-derivative functions) of hyperbolic functions. For a complete list of integral functions, see list of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.