Search results
Results from the WOW.Com Content Network
The first alpha version of OpenCV was released to the public at the IEEE Conference on Computer Vision and Pattern Recognition in 2000, and five betas were released between 2001 and 2005. The first 1.0 version was released in 2006. A version 1.1 "pre-release" was released in October 2008. The second major release of the OpenCV was in October 2009.
Oriented FAST and rotated BRIEF (ORB) is a fast robust local feature detector, first presented by Ethan Rublee et al. in 2011, [1] that can be used in computer vision tasks like object recognition or 3D reconstruction.
OpenCV's Cascade Classifiers support LBPs as of version 2. VLFeat , an open source computer vision library in C (with bindings to multiple languages including MATLAB) has an implementation . LBPLibrary is a collection of eleven Local Binary Patterns (LBP) algorithms developed for background subtraction problem.
Video of the process of scanning and real-time optical character recognition (OCR) with a portable scanner. Optical character recognition or optical character reader (OCR) is the electronic or mechanical conversion of images of typed, handwritten or printed text into machine-encoded text, whether from a scanned document, a photo of a document, a scene photo (for example the text on signs and ...
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]
Computer vision is an interdisciplinary field that deals with how computers can be made to gain high-level understanding from digital images or videos.From the perspective of engineering, it seeks to automate tasks that the human visual system can do.
OpenCV contains a k-means implementation. Orange includes a component for k-means clustering with automatic selection of k and cluster silhouette scoring. PSPP contains k-means, The QUICK CLUSTER command performs k-means clustering on the dataset. R contains three k-means variations. SciPy and scikit-learn contain multiple k-means implementations.
An example image thresholded using Otsu's algorithm Original image. In computer vision and image processing, Otsu's method, named after Nobuyuki Otsu (大津展之, Ōtsu Nobuyuki), is used to perform automatic image thresholding. [1]