Search results
Results from the WOW.Com Content Network
Under the assumption of normality of returns, an active risk of x per cent would mean that approximately 2/3 of the portfolio's active returns (one standard deviation from the mean) can be expected to fall between +x and -x per cent of the mean excess return and about 95% of the portfolio's active returns (two standard deviations from the mean) can be expected to fall between +2x and -2x per ...
R M = return on the market portfolio σ M = standard deviation of the market portfolio σ P = standard deviation of portfolio (R M – I RF)/σ M is the slope of CML. (R M – I RF) is a measure of the risk premium, or the reward for holding risky portfolio instead of risk-free portfolio. σ M is the risk of the market portfolio. Therefore, the ...
The standard deviation is a deviation risk measure. To avoid any confusion, note that deviation risk measures, such as variance and standard deviation are sometimes called risk measures in different fields.
The MPT is a mean-variance theory, and it compares the expected (mean) return of a portfolio with the standard deviation of the same portfolio. The image shows expected return on the vertical axis, and the standard deviation on the horizontal axis (volatility). Volatility is described by standard deviation and it serves as a measure of risk. [7]
Common measures of statistical dispersion are the standard deviation, variance, range, interquartile range, absolute deviation, mean absolute difference and the distance standard deviation. Measures that assess spread in comparison to the typical size of data values include the coefficient of variation.
In financial mathematics, a deviation risk measure is a function to quantify financial risk (and not necessarily downside risk) in a different method than a general risk measure. Deviation risk measures generalize the concept of standard deviation .
The slope of the capital allocation line is equal to the incremental return of the portfolio to the incremental increase of risk. Hence, the slope of the capital allocation line is called the reward-to-variability ratio because the expected return increases continually with the increase of risk as measured by the standard deviation.
Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered. On the other hand, when the variance is small, the data in the set is clustered.