Search results
Results from the WOW.Com Content Network
The free radical theory of aging states that organisms age because cells accumulate free radical damage over time. [1] A free radical is any atom or molecule that has a single unpaired electron in an outer shell. [2] While a few free radicals such as melanin are not chemically reactive, most biologically relevant free radicals are highly ...
2-Methyl-2-butene, 2m2b, 2-methylbut-2-ene, beta-isoamylene, or Trimmethylethylene is an alkene hydrocarbon with the molecular formula C 5 H 10.. Used as a free radical scavenger in trichloromethane (chloroform) and dichloromethane (methylene chloride).
For example, Tokunagayusurika akamusi is a species of midge fly whose larvae live as obligate scavengers at the bottom of lakes and whose adults almost never feed and only live up to a few weeks. Most scavenging animals are facultative scavengers that gain most of their food through other methods, especially predation .
Category: Scavengers. 23 languages. ... A category for scavenging animals. See also carrion. Subcategories. This category has the following 3 subcategories, out of 3 ...
Pages in category "Free radicals" The following 82 pages are in this category, out of 82 total. This list may not reflect recent changes. ...
The mitochondrial theory of ageing has two varieties: free radical and non-free radical. The first is one of the variants of the free radical theory of ageing. It was formulated by J. Miquel and colleagues in 1980 [1] and was developed in the works of Linnane and coworkers (1989). [2] The second was proposed by A. N. Lobachev in 1978. [3]
In this role, vitamin E acts as a radical scavenger, delivering a hydrogen (H) atom to free radicals. At 323 kJ/mol, the O-H bond in tocopherols is about 10% weaker than in most other phenols. [23] This weak bond allows the vitamin to donate a hydrogen atom to the peroxyl radical and other free radicals, minimizing
Some materials continue to weaken through aging, as the remaining free radicals react. [15] The resistance of these polymers to radiation damage can be improved by grafting or copolymerizing aromatic groups, which enhance stability and decrease reactivity, and by adding antioxidants and nanomaterials, which act as free radical scavengers. [19]