Search results
Results from the WOW.Com Content Network
If a × b = a × c, then it does not follow that b = c even if a ≠ 0 (take c = b + a for example) Matrix multiplication also does not necessarily obey the cancellation law. If AB = AC and A ≠ 0, then one must show that matrix A is invertible (i.e. has det(A) ≠ 0) before one can conclude that B = C. If det(A) = 0, then B might not equal C ...
In mathematics, a cancellative semigroup (also called a cancellation semigroup) is a semigroup having the cancellation property. [1] In intuitive terms, the cancellation property asserts that from an equality of the form a·b = a·c, where · is a binary operation, one can cancel the element a and deduce the equality b = c.
The cancellation property holds in any integral domain: for any a, b, and c in an integral domain, if a ≠ 0 and ab = ac then b = c. Another way to state this is that the function x ↦ ax is injective for any nonzero a in the domain. The cancellation property holds for ideals in any integral domain: if xI = xJ, then either x is zero or I = J.
In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation on two matrices of arbitrary size resulting in a block matrix.It is a specialization of the tensor product (which is denoted by the same symbol) from vectors to matrices and gives the matrix of the tensor product linear map with respect to a standard choice of basis.
This product assumes the partitions of the matrices are their columns. In this case m 1 = m, p 1 = p, n = q and for each j: n j = q j = 1. The resulting product is a mp × n matrix of which each column is the Kronecker product of the corresponding columns of A and B. Using the matrices from the previous examples with the columns partitioned:
From the last property it follows that, if is Hermitian and idempotent, for any matrix + = + Finally, if A {\displaystyle A} is an orthogonal projection matrix, then its pseudoinverse trivially coincides with the matrix itself, that is, A + = A {\displaystyle A^{+}=A} .
This symmetrization satisfies the C′(1/20) small cancellation condition. If a symmetrized presentation satisfies the C′(1/m) condition then it also satisfies the C(m) condition. Let r ∈ F(X) be a nontrivial cyclically reduced word which is not a proper power in F(X) and let n ≥ 2.
For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal.