Search results
Results from the WOW.Com Content Network
Cubic honeycomb. In geometry, a honeycomb is a space filling or close packing of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions. Its dimension can be clarified as n-honeycomb for a honeycomb of n-dimensional space.
In the geometry of hyperbolic 3-space, the order-7-4 square honeycomb (or 4,7,4 honeycomb) a regular space-filling tessellation (or honeycomb) with Schläfli symbol {4,7,4}. All vertices are ultra-ideal (existing beyond the ideal boundary) with four order-5 square tilings existing around each edge and with an order-4 heptagonal tiling vertex ...
This file is saved in human-editable plain text format. Any editing of the image or creation of any derivative work should be performed using a text editor.Please do not upload edits saved or exported with Inkscape or similar vector graphics editors, as well as with automated tools such as SVG Translate.
In the geometry of hyperbolic 3-space, the order-infinite-4 square honeycomb (or 4,∞,4 honeycomb) a regular space-filling tessellation (or honeycomb) with Schläfli symbol {4,∞,4}. All vertices are ultra-ideal (existing beyond the ideal boundary) with four infinite-order square tilings existing around each edge and with an order-4 ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
The vertex figure of this honeycomb is a dodecahedron, {5,3}. The "ideal surface" projection below is a plane-at-infinity, in the Poincaré half-space model of H3. It shows an Apollonian gasket pattern of circles inside a largest circle.
If the honeycomb is too worn out, the wax can be reused in a number of ways, including making sheets of comb foundation with a hexagonal pattern. Such foundation sheets allow the bees to build the comb with less effort, and the hexagonal pattern of worker-sized cell bases discourages the bees from building the larger drone cells.
A honeycomb-shaped structure provides a material with minimal density and relative high out-of-plane compression properties and out-of-plane shear properties. [1] Man-made honeycomb structural materials are commonly made by layering a honeycomb material between two thin layers that provide strength in tension. This forms a plate-like assembly.