Search results
Results from the WOW.Com Content Network
Random-restart hill climbing is a meta-algorithm built on top of the hill climbing algorithm. It is also known as Shotgun hill climbing . It iteratively does hill-climbing, each time with a random initial condition x 0 {\displaystyle x_{0}} .
[3] [4] Steven Minton and Andy Philips analyzed the neural network algorithm and separated it into two phases: (1) an initial assignment using a greedy algorithm and (2) a conflict minimization phases (later to be called "min-conflicts"). A paper was written and presented at AAAI-90; Philip Laird provided the mathematical analysis of the algorithm.
Iterated Local Search [1] [2] (ILS) is a term in applied mathematics and computer science defining a modification of local search or hill climbing methods for solving discrete optimization problems. Local search methods can get stuck in a local minimum , where no improving neighbors are available.
Hill climbing algorithms can only escape a plateau by doing changes that do not change the quality of the assignment. As a result, they can be stuck in a plateau where the quality of assignment has a local maxima. GSAT (greedy sat) was the first local search algorithm for satisfiability, and is a form of hill climbing.
Local search is an anytime algorithm; it can return a valid solution even if it's interrupted at any time after finding the first valid solution. Local search is typically an approximation or incomplete algorithm because the search may stop even if the current best solution found is not optimal. This can happen even if termination happens ...
Beam search with width 3 (animation) In computer science, beam search is a heuristic search algorithm that explores a graph by expanding the most promising node in a limited set. Beam search is a modification of best-first search that reduces its memory requirements. Best-first search is a graph search which orders all partial solutions (states ...
Stochastic hill climbing is a variant of the basic hill climbing method. While basic hill climbing always chooses the steepest uphill move, "stochastic hill climbing chooses at random from among the uphill moves; the probability of selection can vary with the steepness of the uphill move." [1]
Simulated annealing searching for a maximum. The objective here is to get to the highest point. In this example, it is not enough to use a simple hill climb algorithm, as there are many local maxima. By cooling the temperature slowly the global maximum is found.