Search results
Results from the WOW.Com Content Network
This template calculates the volume of a three-dimensional space. This is for cubic feet, cubic centimeters, etc., not for converting linear measures to things like gallons. It only accepts numeric input, not units, and does not perform conversions.
3D model of a truncated cube. In geometry, the truncated cube, or truncated hexahedron, is an Archimedean solid.It has 14 regular faces (6 octagonal and 8 triangular), 36 edges, and 24 vertices.
The surface area and the volume of the truncated icosahedron of edge length are: [2] = (+ +) = +. The sphericity of a polyhedron describes how closely a polyhedron resembles a sphere. It can be defined as the ratio of the surface area of a sphere with the same volume to the polyhedron's surface area, from which the value is between 0 and 1.
List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities; List of volume formulas – Quantity of three-dimensional space
Given the edge length .The surface area of a truncated tetrahedron is the sum of 4 regular hexagons and 4 equilateral triangles' area, and its volume is: [2] =, =.. The dihedral angle of a truncated tetrahedron between triangle-to-hexagon is approximately 109.47°, and that between adjacent hexagonal faces is approximately 70.53°.
The generation of a bicylinder Calculating the volume of a bicylinder. A bicylinder generated by two cylinders with radius r has the volume =, and the surface area [1] [6] =.. The upper half of a bicylinder is the square case of a domical vault, a dome-shaped solid based on any convex polygon whose cross-sections are similar copies of the polygon, and analogous formulas calculating the volume ...
The volume of a cuboctahedron can be determined by slicing it off into two regular triangular cupolas, summing up their volume. Given that the edge length a {\displaystyle a} , its surface area and volume are: [ 5 ] A = ( 6 + 2 3 ) a 2 ≈ 9.464 a 2 V = 5 2 3 a 3 ≈ 2.357 a 3 . {\displaystyle {\begin{aligned}A&=\left(6+2{\sqrt {3}}\right)a^{2 ...
A cushion filled with stuffing. In geometry, the paper bag problem or teabag problem is to calculate the maximum possible inflated volume of an initially flat sealed rectangular bag which has the same shape as a cushion or pillow, made out of two pieces of material which can bend but not stretch.