Search results
Results from the WOW.Com Content Network
Reaction of sodium bicarbonate and an acid produces a salt and carbonic acid, which readily decomposes to carbon dioxide and water: [79] NaHCO 3 + HCl → NaCl + H 2 O+CO 2 H 2 CO 3 → H 2 O + CO 2 (g) Sodium bicarbonate reacts with acetic acid (found in vinegar), producing sodium acetate, water, and carbon dioxide: NaHCO 3 + CH 3 COOH → CH ...
Tyrode's solution is a solution that is roughly isotonic with interstitial fluid and used in physiological experiments and tissue culture. It resembles lactated Ringer's solution, but contains magnesium, a sugar (usually glucose) as an energy source and uses bicarbonate and phosphate as a buffer instead of lactate.
Hanks' salts is a collective group of salts rich in bicarbonate ions, formulated in 1940 by the microbiologist John H. Hanks. [1] Typically, they are used as a buffer system in cell culture media and aid in maintaining the optimum physiological pH (roughly 7.0–7.4) for cellular growth.
The ammonia from reaction (III) is recycled back to the initial brine solution of reaction (I). The sodium bicarbonate (NaHCO 3 ) precipitate from reaction (I) is then converted to the final product, sodium carbonate (washing soda: Na 2 CO 3 ), by calcination (160–230 °C), producing water and carbon dioxide as byproducts:
Fischer glycosidation (or Fischer glycosylation) refers to the formation of a glycoside by the reaction of an aldose or ketose with an alcohol in the presence of an acid catalyst. The reaction is named after the German chemist, Emil Fischer, winner of the Nobel Prize in chemistry, 1902, who developed this method between 1893 and 1895. [1] [2] [3]
Carbohydrate synthesis is a sub-field of organic chemistry concerned with generating complex carbohydrate structures from simple units (monosaccharides). The generation of carbohydrate structures usually involves linking monosaccharides or oligosaccharides through glycosidic bonds, a process called glycosylation .
The aqueous solution in the classical reaction contains glucose, sodium hydroxide and methylene blue. [14] In the first step an acyloin of glucose is formed. The next step is a redox reaction of the acyloin with methylene blue in which the glucose is oxidized to diketone in alkaline solution [6] and methylene blue is reduced to colorless leucomethylene blue.
Gluconic acid is typically produced by the aerobic oxidation of glucose in the presence of the enzyme glucose oxidase. The conversion produces gluconolactone and hydrogen peroxide. The lactone spontaneously hydrolyzes to gluconic acid in water. [3] C 6 H 12 O 6 + O 2 → C 6 H 10 O 6 + H 2 O 2 C 6 H 10 O 6 + H 2 O → C 6 H 12 O 7