enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bivariate data - Wikipedia

    en.wikipedia.org/wiki/Bivariate_data

    In statistics, bivariate data is data on each of two variables, where each value of one of the variables is paired with a value of the other variable. [1] It is a specific but very common case of multivariate data. The association can be studied via a tabular or graphical display, or via sample statistics which might be used for inference.

  3. Peirce's criterion - Wikipedia

    en.wikipedia.org/wiki/Peirce's_criterion

    First, the statistician may remove the suspected outliers from the data set and then use the arithmetic mean to estimate the location parameter. Second, the statistician may use a robust statistic, such as the median statistic. Peirce's criterion is a statistical procedure for eliminating outliers.

  4. Bivariate analysis - Wikipedia

    en.wikipedia.org/wiki/Bivariate_analysis

    Like univariate analysis, bivariate analysis can be descriptive or inferential. It is the analysis of the relationship between the two variables. [1] Bivariate analysis is a simple (two variable) special case of multivariate analysis (where multiple relations between multiple variables are examined simultaneously). [1]

  5. Minimum mean square error - Wikipedia

    en.wikipedia.org/wiki/Minimum_mean_square_error

    Also, the gain factor, +, depends on our confidence in the new data sample, as measured by the noise variance, versus that in the previous data. The initial values of x ^ {\displaystyle {\hat {x}}} and C e {\displaystyle C_{e}} are taken to be the mean and covariance of the aprior probability density function of x {\displaystyle x} .

  6. Bagplot - Wikipedia

    en.wikipedia.org/wiki/Bagplot

    A bagplot, or starburst plot, [1] [2] is a method in robust statistics for visualizing two-or three-dimensional statistical data, analogous to the one-dimensional box plot. Introduced in 1999 by Rousseuw et al., the bagplot allows one to visualize the location, spread, skewness, and outliers of a data set. [3]

  7. Anscombe's quartet - Wikipedia

    en.wikipedia.org/wiki/Anscombe's_quartet

    The calculated regression is offset by the one outlier, which exerts enough influence to lower the correlation coefficient from 1 to 0.816. Finally, the fourth graph (bottom right) shows an example when one high-leverage point is enough to produce a high correlation coefficient, even though the other data points do not indicate any relationship ...

  8. Dixon's Q test - Wikipedia

    en.wikipedia.org/wiki/Dixon's_Q_test

    However, at 95% confidence, Q = 0.455 < 0.466 = Q table 0.167 is not considered an outlier. McBane [1] notes: Dixon provided related tests intended to search for more than one outlier, but they are much less frequently used than the r 10 or Q version that is intended to eliminate a single outlier.

  9. Ratio estimator - Wikipedia

    en.wikipedia.org/wiki/Ratio_estimator

    Assume there are two characteristics – x and y – that can be observed for each sampled element in the data set. The ratio R is = ¯ / ¯ The ratio estimate of a value of the y variate (θ y) is