enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gene conversion - Wikipedia

    en.wikipedia.org/wiki/Gene_conversion

    Gene conversion is the process by which one DNA sequence replaces a homologous sequence such that the sequences become identical after the conversion. [1] Gene conversion can be either allelic, meaning that one allele of the same gene replaces another allele, or ectopic, meaning that one paralogous DNA sequence converts another.

  3. Zygosity - Wikipedia

    en.wikipedia.org/wiki/Zygosity

    The words homozygous, heterozygous, and hemizygous are used to describe the genotype of a diploid organism at a single locus on the DNA. Homozygous describes a genotype consisting of two identical alleles at a given locus, heterozygous describes a genotype consisting of two different alleles at a locus, hemizygous describes a genotype consisting of only a single copy of a particular gene in an ...

  4. Homologous recombination - Wikipedia

    en.wikipedia.org/wiki/Homologous_recombination

    [52] [53] New DNA synthesis fills in any gaps, and ligation restores the DNA duplex as two continuous strands. [54] The DNA sequence between the repeats is always lost, as is one of the two repeats. The SSA pathway is considered mutagenic since it results in such deletions of genetic material.

  5. Chromosomal crossover - Wikipedia

    en.wikipedia.org/wiki/Chromosomal_crossover

    The recombinases catalyze invasion of the opposite chromatid by the single-stranded DNA from one end of the break. Next, the 3' end of the invading DNA primes DNA synthesis, causing displacement of the complementary strand, which subsequently anneals to the single-stranded DNA generated from the other end of the initial double-stranded break.

  6. DNA synthesis - Wikipedia

    en.wikipedia.org/wiki/DNA_synthesis

    DNA synthesis occurs in all eukaryotes and prokaryotes, as well as some viruses. The accurate synthesis of DNA is important in order to avoid mutations to DNA. In humans, mutations could lead to diseases such as cancer so DNA synthesis, and the machinery involved in vivo, has been studied extensively throughout the decades. In the future these ...

  7. Double-strand break repair model - Wikipedia

    en.wikipedia.org/wiki/Double-strand_break_repair...

    Afterwards, the 3’ ssDNA invades the template DNA, and displaces a DNA strand to form a D-loop. DNA polymerase and other accessory factors follows by replacing the missing DNA via DNA synthesis. Ligase then attaches the DNA strand break, [10] resulting in the formation of 2 Holliday junctions. The recombined DNA strands then undergoes ...

  8. Synthesis-dependent strand annealing - Wikipedia

    en.wikipedia.org/wiki/Synthesis-dependent_strand...

    Synthesis-dependent strand annealing (SDSA) is a major mechanism of homology-directed repair of DNA double-strand breaks (DSBs). Although many of the features of SDSA were first suggested in 1976, [ 1 ] the double-Holliday junction model proposed in 1983 [ 2 ] was favored by many researchers.

  9. Eukaryotic DNA replication - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_DNA_replication

    Owing to the relatively short nature of the eukaryotic Okazaki fragment, DNA replication synthesis occurring discontinuously on the lagging strand is less efficient and more time-consuming than leading-strand synthesis. DNA synthesis is complete once all RNA primers are removed and nicks are repaired. Depiction of DNA replication at replication ...