Search results
Results from the WOW.Com Content Network
The method used to compute the checksum is defined in RFC 768, and efficient calculation is discussed in RFC 1071: Checksum is the 16-bit ones' complement of the ones' complement sum of a pseudo header of information from the IP header, the UDP header, and the data, padded with zero octets at the end (if necessary) to make a multiple of two octets.
Interior gateway protocol (any private interior gateway, for example Cisco's IGRP) 0x0A 10 BBN-RCC-MON BBN RCC Monitoring 0x0B 11 NVP-II Network Voice Protocol: RFC 741: 0x0C 12 PUP Xerox PUP: 0x0D 13 ARGUS ARGUS 0x0E 14 EMCON EMCON 0x0F 15 XNET Cross Net Debugger IEN 158 [2] 0x10 16 CHAOS Chaos: 0x11 17 UDP User Datagram Protocol: RFC 768 ...
For computing the checksum UDP-Lite uses the same checksum algorithm used for UDP (and TCP). [1] Modern multimedia codecs, like G.718 and Adaptive Multi-Rate (AMR) for audio and H.264 and MPEG-4 for video, have resilience features already built into the syntax and structure of the stream. This allows the codec to (a) detect errors in the stream ...
The checksum algorithms most used in practice, such as Fletcher's checksum, Adler-32, and cyclic redundancy checks (CRCs), address these weaknesses by considering not only the value of each word but also its position in the sequence. This feature generally increases the cost of computing the checksum.
The checksum field is the 16 bit one's complement of the one's complement sum of all 16 bit words in the header. For purposes of computing the checksum, the value of the checksum field is zero. If there is no corruption, the result of summing the entire IP header, including checksum, and then taking its one's complement should be zero.
Checksum Coverage (CsCov): 4 bits Checksum Coverage determines the parts of the packet that are covered by the Checksum field. Checksum: 16 bits The Internet checksum of the packet's DCCP header (including options), a network-layer pseudoheader, and, depending on Checksum Coverage, all, some, or none of the application data.
A typical ROHC implementation will aim to get the terminal into Second-Order state, where a 1-byte ROHC header can be substituted for the 40-byte IPv4/UDP/RTP or the 60-byte IPv6/UDP/RTP (i.e. VoIP) header. In this state, the 8-bit ROHC header contains three fields: a 1-bit packet-type flag (set to '1' only for longer ROHC headers)
BSD checksum (Unix) 16 bits sum with circular rotation SYSV checksum (Unix) 16 bits sum with circular rotation sum8 8 bits sum Internet Checksum: 16 bits sum (ones' complement) sum24 24 bits sum sum32 32 bits sum fletcher-4: 4 bits sum fletcher-8: 8 bits sum fletcher-16: 16 bits sum fletcher-32: 32 bits sum Adler-32: 32 bits sum xor8: 8 bits ...