enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. International Annealed Copper Standard - Wikipedia

    en.wikipedia.org/wiki/International_Annealed...

    Sometime around 1913, several copper samples from 14 important refiners and wire manufacturers were analyzed by the U.S. Bureau of Standards. The average resistance of the samples was determined to be 0.15292 Ω for copper wires with a mass of 1 gram of uniform cross section and 1 meter in length at 20 °C. In the United States this is usually ...

  3. Electrical resistivity and conductivity - Wikipedia

    en.wikipedia.org/wiki/Electrical_resistivity_and...

    This means that all pure copper (Cu) wires (which have not been subjected to distortion of their crystalline structure etc.), irrespective of their shape and size, have the same resistivity, but a long, thin copper wire has a much larger resistance than a thick, short copper wire. Every material has its own characteristic resistivity.

  4. Electrical resistance and conductance - Wikipedia

    en.wikipedia.org/wiki/Electrical_resistance_and...

    Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...

  5. Electrical resistivities of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Electrical_resistivities_of...

    As quoted in an online version of: David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition.CRC Press. Boca Raton, Florida, 2003; Section 4, Properties of the Elements and Inorganic Compounds; Physical Properties of the Rare Earth Metals

  6. Wiedemann–Franz law - Wikipedia

    en.wikipedia.org/wiki/Wiedemann–Franz_law

    Kittel [8] gives some values of L ranging from L = 2.23×10 −8 V 2 K −2 for copper at 0 °C to L = 3.2×10 −8 V 2 K −2 for tungsten at 100 °C. Rosenberg [ 9 ] notes that the Wiedemann–Franz law is generally valid for high temperatures and for low (i.e., a few Kelvins) temperatures, but may not hold at intermediate temperatures.

  7. Copper conductor - Wikipedia

    en.wikipedia.org/wiki/Copper_conductor

    Also, comparatively, more copper wire can fit in a given conduit than conductors with lower conductivities. This greater wire fill is a special advantage when a system is rewired or expanded. [17] Copper building wire is compatible with brass and quality plated screws. The wire provides connections that will not corrode or creep.

  8. IEC 60228 - Wikipedia

    en.wikipedia.org/wiki/IEC_60228

    Comparison of SWG (red), AWG (blue) and IEC 60228 (black) wire gauge sizes from 0.03 to 200 mm² to scale on a 1 mm grid – in the SVG file, hover over a size to highlight it. In engineering applications, it is often most convenient to describe a wire in terms of its cross-section area, rather than its diameter, because the cross section is directly proportional to its strength and weight ...

  9. Resistance wire - Wikipedia

    en.wikipedia.org/wiki/Resistance_wire

    Nichrome, a non-magnetic 80/20 alloy of nickel and chromium, is the most common resistance wire for heating purposes because it has a high resistivity and resistance to oxidation at high temperatures, up to 1,400 °C (2,550 °F). When used as a heating element, resistance wire is usually wound into coils.