Search results
Results from the WOW.Com Content Network
Dependence of the system behavior on the value of the damping ratio ζ Phase portrait of damped oscillator, with increasing damping strength. Video clip demonstrating a damped harmonic oscillator consisting of a dynamics cart between two springs. An accelerometer on top of the cart shows the magnitude and direction of the acceleration.
The damping ratio is a system parameter, denoted by ζ ("zeta"), that can vary from undamped (ζ = 0), underdamped (ζ < 1) through critically damped (ζ = 1) to overdamped (ζ > 1). The behaviour of oscillating systems is often of interest in a diverse range of disciplines that include control engineering , chemical engineering , mechanical ...
Damped oscillation is a typical transient response, where the output value oscillates until finally reaching a steady-state value. In electrical engineering and mechanical engineering, a transient response is the response of a system to a change from an equilibrium or a steady state. The transient response is not necessarily tied to abrupt ...
The equation describes the motion of a damped oscillator with a more complex potential than in simple harmonic motion (which corresponds to the case = =); in physical terms, it models, for example, an elastic pendulum whose spring's stiffness does not exactly obey Hooke's law.
The underdamped response is a decaying oscillation at frequency ω d. The oscillation decays at a rate determined by the attenuation α. The exponential in α describes the envelope of the oscillation. B 1 and B 2 (or B 3 and the phase shift φ in the second form) are arbitrary constants determined by boundary conditions. The frequency ω d is ...
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...
There is a clear analogy here between these equations and those that defined the evolution of the in-phase and out-of-phase components of oscillation in the classical case. Now, however, there is a third term w , which can be interpreted as the population difference between the excited and ground state (varying from −1 to represent completely ...
model damped unforced oscillations of a weight on a spring. The displacement will then be of the form () = / (). The constant T (= /) is called the relaxation time of the system and the constant μ is the quasi-frequency.