enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    When one of a and b is zero, the GCD is the absolute value of the nonzero integer: gcd(a, 0) = gcd(0, a) = | a |. This case is important as the terminating step of the Euclidean algorithm. The above definition is unsuitable for defining gcd(0, 0), since there is no greatest integer n such that 0 × n = 0.

  3. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    For illustration, the probability of a quotient of 1, 2, 3, or 4 is roughly 41.5%, 17.0%, 9.3%, and 5.9%, respectively. Since the operation of subtraction is faster than division, particularly for large numbers, [115] the subtraction-based Euclid's algorithm is competitive with the division-based version. [116]

  4. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.

  5. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n

  6. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    Least common multiple = 2 × 2 × 2 × 2 × 3 × 3 × 5 = 720 Greatest common divisor = 2 × 2 × 3 = 12 Product = 2 × 2 × 2 × 2 × 3 × 2 × 2 × 3 × 3 × 5 = 8640. This also works for the greatest common divisor (gcd), except that instead of multiplying all of the numbers in the Venn diagram, one multiplies only the prime factors that are ...

  7. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    In arithmetic and computer programming, the extended Euclidean algorithm is an extension to the Euclidean algorithm, and computes, in addition to the greatest common divisor (gcd) of integers a and b, also the coefficients of Bézout's identity, which are integers x and y such that

  8. GCD test - Wikipedia

    en.wikipedia.org/wiki/GCD_test

    Where 0<=i1, i2 <n and i1 != i2. If GCD(x,y) divides (m-k), then there may exist some dependency in the loop statement s1 and s2. If GCD(x,y) does not divide (m-k) then both statements are independent and can be executed at parallel. Similarly this test is conducted for all statements present in a given loop.

  9. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    For a concrete example one can take R = Z[i√5], p = 1 + i√5, a = 1 − i√5, q = 2, b = 3. In this example the polynomial 3 + 2X + 2X 2 (obtained by dividing the right hand side by q = 2) provides an example of the failure of the irreducibility statement (it is irreducible over R, but reducible over its field of fractions Q[i√5]).