enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Overfitting - Wikipedia

    en.wikipedia.org/wiki/Overfitting

    Underfitting is the inverse of overfitting, meaning that the statistical model or machine learning algorithm is too simplistic to accurately capture the patterns in the data. A sign of underfitting is that there is a high bias and low variance detected in the current model or algorithm used (the inverse of overfitting: low bias and high variance ).

  3. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    Suppose, to address the question of gender discrimination, we have survey data on salaries within a particular field, e.g., computer software. It is known women are under-represented considerably in a random sample of software engineers, which would be important when adjusting for other variables such as years employed and current level of ...

  4. Data augmentation - Wikipedia

    en.wikipedia.org/wiki/Data_augmentation

    Data augmentation is a statistical technique which allows maximum likelihood estimation from incomplete data. [1] [2] Data augmentation has important applications in Bayesian analysis, [3] and the technique is widely used in machine learning to reduce overfitting when training machine learning models, [4] achieved by training models on several slightly-modified copies of existing data.

  5. Early stopping - Wikipedia

    en.wikipedia.org/wiki/Early_stopping

    The form the population iteration, which converges to , but cannot be used in computation, while the form the sample iteration which usually converges to an overfitting solution. We want to control the difference between the expected risk of the sample iteration and the minimum expected risk, that is, the expected risk of the regression function:

  6. Statistical model specification - Wikipedia

    en.wikipedia.org/wiki/Statistical_model...

    The purpose of the comparison is to determine which candidate model is most appropriate for statistical inference. Common criteria for comparing models include the following: R 2, Bayes factor, and the likelihood-ratio test together with its generalization relative likelihood. For more on this topic, see statistical model selection.

  7. One in ten rule - Wikipedia

    en.wikipedia.org/wiki/One_in_ten_rule

    In statistics, the one in ten rule is a rule of thumb for how many predictor parameters can be estimated from data when doing regression analysis (in particular proportional hazards models in survival analysis and logistic regression) while keeping the risk of overfitting and finding spurious correlations low. The rule states that one ...

  8. Cross-validation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Cross-validation_(statistics)

    [8] [9] The goal of cross-validation is to test the model's ability to predict new data that was not used in estimating it, in order to flag problems like overfitting or selection bias [10] and to give an insight on how the model will generalize to an independent dataset (i.e., an unknown dataset, for instance from a real problem).

  9. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]