Search results
Results from the WOW.Com Content Network
Hendrik Antoon Lorentz (1853–1928), after whom the Lorentz group is named. In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz.
From the invariance of the spacetime interval it follows = and this matrix equation contains the general conditions on the Lorentz transformation to ensure invariance of the spacetime interval. Taking the determinant of the equation using the product rule [ nb 4 ] gives immediately [ det ( Λ ) ] 2 = 1 ⇒ det ( Λ ) = ± 1 {\displaystyle \left ...
In the fundamental branches of modern physics, namely general relativity and its widely applicable subset special relativity, as well as relativistic quantum mechanics and relativistic quantum field theory, the Lorentz transformation is the transformation rule under which all four-vectors and tensors containing physical quantities transform from one frame of reference to another.
Hendrik Antoon Lorentz (right) after whom the Lorentz group is named and Albert Einstein whose special theory of relativity is the main source of application. Photo taken by Paul Ehrenfest 1921. The Lorentz group is a Lie group of symmetries of the spacetime of special relativity .
Hendrik Antoon Lorentz (/ ˈ l ɒr ən t s /, LORR-ənts; Dutch: [ˈɦɛndrɪk ˈloːrɛnts]; 18 July 1853 – 4 February 1928) was a Dutch theoretical physicist who shared the 1902 Nobel Prize in Physics with Pieter Zeeman for his theoretical explanation of the Zeeman effect.
This is a topic category for the topic Hendrik Lorentz ... Lorentz–Lorenz equation; Lorentz-violating electrodynamics; Lorentzian algebra;
The Lie algebra of SO(3) is denoted by () and consists of all skew-symmetric 3 × 3 matrices. [7] This may be seen by differentiating the orthogonality condition , A T A = I , A ∈ SO(3) . [ nb 2 ] The Lie bracket of two elements of s o ( 3 ) {\displaystyle {\mathfrak {so}}(3)} is, as for the Lie algebra of every matrix group, given by the ...
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism (in particular, Maxwell's equations and the Lorentz force) in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems.