Ads
related to: strong product of graphs worksheet solutions math free download
Search results
Results from the WOW.Com Content Network
The strong product of any two graphs can be constructed as the union of two other products of the same two graphs, the Cartesian product of graphs and the tensor product of graphs. An example of a strong product is the king's graph, the graph of moves of a chess king on a chessboard, which can be constructed as a strong product of path graphs ...
Download QR code; Print/export Download as PDF; ... Pages in category "Graph products" ... Strong product of graphs; T.
tensor graph product (or direct graph product, categorical graph product, cardinal graph product, Kronecker graph product): it is a commutative and associative operation (for unlabelled graphs), zig-zag graph product; [3] graph product based on other products: rooted graph product: it is an associative operation (for unlabelled but rooted ...
In graph theory, a graph product is a binary operation on graphs. Specifically, it is an operation that takes two graphs G 1 and G 2 and produces a graph H with the following properties: The vertex set of H is the Cartesian product V ( G 1 ) × V ( G 2 ) , where V ( G 1 ) and V ( G 2 ) are the vertex sets of G 1 and G 2 , respectively.
The yellow directed acyclic graph is the condensation of the blue directed graph. It is formed by contracting each strongly connected component of the blue graph into a single yellow vertex. If each strongly connected component is contracted to a single vertex, the resulting graph is a directed acyclic graph, the condensation of G.
For instance, if G and H are both connected graphs, each having at least four vertices and having exactly twice as many total vertices as their domination numbers, then γ(G H) = γ(G) γ(H). [2] The graphs G and H with this property consist of the four-vertex cycle C 4 together with the rooted products of a connected graph and a single edge. [2]
Ads
related to: strong product of graphs worksheet solutions math free download