enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Persistence of a number - Wikipedia

    en.wikipedia.org/wiki/Persistence_of_a_number

    The additive persistence of 2718 is 2: first we find that 2 + 7 + 1 + 8 = 18, and then that 1 + 8 = 9. The multiplicative persistence of 39 is 3, because it takes three steps to reduce 39 to a single digit: 39 → 27 → 14 → 4. Also, 39 is the smallest number of multiplicative persistence 3.

  3. Zero-product property - Wikipedia

    en.wikipedia.org/wiki/Zero-product_property

    If is a prime number, then the ring of integers modulo has the zero-product property (in fact, it is a field). The Gaussian integers are an integral domain because they are a subring of the complex numbers. In the strictly skew field of quaternions, the zero-product property holds. This ring is not an integral domain, because the multiplication ...

  4. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    A primorial x# is the product of all primes from 2 to x. The first: 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810 (sequence A002110 in the OEIS). 1# = 1 is sometimes included. A factorial x! is the product of all numbers from 1 to x.

  5. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    The graph crosses the x-axis at roots of odd multiplicity and does not cross it at roots of even multiplicity. A non-zero polynomial function is everywhere non-negative if and only if all its roots have even multiplicity and there exists an x 0 {\displaystyle x_{0}} such that f ( x 0 ) > 0 {\displaystyle f(x_{0})>0} .

  6. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial ...

  7. p-adic valuation - Wikipedia

    en.wikipedia.org/wiki/P-adic_valuation

    where the product is taken over all primes p and the usual absolute value, denoted | |. This follows from simply taking the prime factorization : each prime power factor p k {\displaystyle p^{k}} contributes its reciprocal to its p -adic absolute value, and then the usual Archimedean absolute value cancels all of them.

  8. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    Leonhard Euler introduced the function in 1763. [7] [8] [9] However, he did not at that time choose any specific symbol to denote it.In a 1784 publication, Euler studied the function further, choosing the Greek letter π to denote it: he wrote πD for "the multitude of numbers less than D, and which have no common divisor with it". [10]

  9. Multiple (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiple_(mathematics)

    In mathematics, a multiple is the product of any quantity and an integer. [1] In other words, for the quantities a and b, it can be said that b is a multiple of a if b = na for some integer n, which is called the multiplier. If a is not zero, this is equivalent to saying that / is an integer.