enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...

  3. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    The Taylor series of f converges uniformly to the zero function T f (x) = 0, which is analytic with all coefficients equal to zero. The function f is unequal to this Taylor series, and hence non-analytic. For any order k ∈ N and radius r > 0 there exists M k,r > 0 satisfying the remainder bound above.

  4. Experimental uncertainty analysis - Wikipedia

    en.wikipedia.org/wiki/Experimental_uncertainty...

    Even if the PDF can be found, finding the moments (above) can be difficult. 4. The solution is to expand the function z in a second-order Taylor series; the expansion is done around the mean values of the several variables x. (Usually the expansion is done to first order; the second-order terms are needed to find the bias in the mean.

  5. Euler numbers - Wikipedia

    en.wikipedia.org/wiki/Euler_numbers

    The Euler numbers appear in the Taylor series expansions of the secant and hyperbolic secant functions. The latter is the function in the definition. The latter is the function in the definition. They also occur in combinatorics , specifically when counting the number of alternating permutations of a set with an even number of elements.

  6. Analytic function - Wikipedia

    en.wikipedia.org/wiki/Analytic_function

    A function is analytic if and only if for every in its domain, its Taylor series about converges to the function in some neighborhood of . This is stronger than merely being infinitely differentiable at x 0 {\displaystyle x_{0}} , and therefore having a well-defined Taylor series; the Fabius function provides an example of a function that is ...

  7. Multipole expansion - Wikipedia

    en.wikipedia.org/wiki/Multipole_expansion

    Multipole expansions are useful because, similar to Taylor series, oftentimes only the first few terms are needed to provide a good approximation of the original function. The function being expanded may be real - or complex -valued and is defined either on R 3 {\displaystyle \mathbb {R} ^{3}} , or less often on R n {\displaystyle \mathbb {R ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. File:Taylor.pdf - Wikipedia

    en.wikipedia.org/wiki/File:Taylor.pdf

    Original file (906 × 685 pixels, file size: 33 KB, MIME type: application/pdf) This is a file from the Wikimedia Commons . Information from its description page there is shown below.