enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Poisson regression - Wikipedia

    en.wikipedia.org/wiki/Poisson_regression

    In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. [1] Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters.

  3. Zero-inflated model - Wikipedia

    en.wikipedia.org/wiki/Zero-inflated_model

    Hilbe [3] notes that "Poisson regression is traditionally conceived of as the basic count model upon which a variety of other count models are based." In a Poisson model, "… the random variable y {\displaystyle y} is the count response and parameter λ {\displaystyle \lambda } (lambda) is the mean.

  4. Log-linear model - Wikipedia

    en.wikipedia.org/wiki/Log-linear_model

    in which the f i (X) are quantities that are functions of the variable X, in general a vector of values, while c and the w i stand for the model parameters. The term may specifically be used for: A log-linear plot or graph, which is a type of semi-log plot. Poisson regression for contingency tables, a type of generalized linear model.

  5. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    Poisson; Multilevel model; ... is a function (regression function) of ... Although the parameters of a regression model are usually estimated using the method of ...

  6. Fixed-effect Poisson model - Wikipedia

    en.wikipedia.org/wiki/Fixed-effect_Poisson_model

    Linear panel data models use the linear additivity of the fixed effects to difference them out and circumvent the incidental parameter problem. Even though Poisson models are inherently nonlinear, the use of the linear index and the exponential link function lead to multiplicative separability, more specifically [2] E[y it ∨ x i1...

  7. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    The link function is often related to the distribution of the response, and in particular it typically has the effect of transforming between the (,) range of the linear predictor and the range of the response variable. Some common examples of GLMs are: Poisson regression for count data.

  8. Conway–Maxwell–Poisson distribution - Wikipedia

    en.wikipedia.org/wiki/Conway–Maxwell–Poisson...

    In probability theory and statistics, the Conway–Maxwell–Poisson (CMP or COM–Poisson) distribution is a discrete probability distribution named after Richard W. Conway, William L. Maxwell, and Siméon Denis Poisson that generalizes the Poisson distribution by adding a parameter to model overdispersion and underdispersion.

  9. Overdispersion - Wikipedia

    en.wikipedia.org/wiki/Overdispersion

    The Poisson distribution has one free parameter and does not allow for the variance to be adjusted independently of the mean. The choice of a distribution from the Poisson family is often dictated by the nature of the empirical data. For example, Poisson regression analysis is commonly used to model count data. If overdispersion is a feature ...