enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pólya conjecture - Wikipedia

    en.wikipedia.org/wiki/Pólya_conjecture

    In number theory, the Pólya conjecture (or Pólya's conjecture) stated that "most" (i.e., 50% or more) of the natural numbers less than any given number have an odd number of prime factors. The conjecture was set forth by the Hungarian mathematician George Pólya in 1919, [ 1 ] and proved false in 1958 by C. Brian Haselgrove .

  3. Mathematics and Plausible Reasoning - Wikipedia

    en.wikipedia.org/wiki/Mathematics_and_plausible...

    Polya begins Volume I with a discussion on induction, not mathematical induction, but as a way of guessing new results.He shows how the chance observations of a few results of the form 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7, etc., may prompt a sharp mind to formulate the conjecture that every even number greater than 4 can be represented as the sum of two odd prime numbers.

  4. List of conjectures - Wikipedia

    en.wikipedia.org/wiki/List_of_conjectures

    Conjecture Field Comments Eponym(s) Cites 1/3–2/3 conjecture: order theory: n/a: 70 abc conjecture: number theory: ⇔Granville–Langevin conjecture, Vojta's conjecture in dimension 1 ⇒ErdÅ‘s–Woods conjecture, Fermat–Catalan conjecture Formulated by David Masser and Joseph Oesterlé. [1] Proof claimed in 2012 by Shinichi Mochizuki: n/a ...

  5. Explicit formulae for L-functions - Wikipedia

    en.wikipedia.org/wiki/Explicit_formulae_for_L...

    Riemann's original use of the explicit formula was to give an exact formula for the number of primes less than a given number. To do this, take F(log(y)) to be y 1/2 /log(y) for 0 ≤ y ≤ x and 0 elsewhere. Then the main term of the sum on the right is the number of primes less than x.

  6. Hilbert–Pólya conjecture - Wikipedia

    en.wikipedia.org/wiki/Hilbert–Pólya_conjecture

    The earliest published statement of the conjecture seems to be in Montgomery (1973). [1] [2] David Hilbert did not work in the central areas of analytic number theory, but his name has become known for the Hilbert–Pólya conjecture due to a story told by Ernst Hellinger, a student of Hilbert, to André Weil. Hellinger said that Hilbert ...

  7. C. Brian Haselgrove - Wikipedia

    en.wikipedia.org/wiki/C._Brian_Haselgrove

    Colin Brian Haselgrove (26 September 1926 – 27 May 1964) was an English mathematician who is best known for his disproof of the Pólya conjecture in 1958. [1] Haselgrove was educated at Blundell's School and from there won a scholarship to King's College, Cambridge. He obtained his Ph.D., which was supervised by Albert Ingham, from Cambridge ...

  8. Wikipedia : Reference desk/Archives/Mathematics/2013 April 25

    en.wikipedia.org/wiki/Wikipedia:Reference_desk/...

    Language links are at the top of the page across from the title.

  9. Wikipedia:Reference desk/Archives/Mathematics/2015 February 10

    en.wikipedia.org/wiki/Wikipedia:Reference_desk/...

    What I need is a formula or algorithm for determining the number of servers needed to meet a given QoS target, which is of the form: (wait time + service time) ≤ T, for ≥ X% of customers, for some given T and X. Thanks in advance. --173.49.19.4 05:37, 10 February 2015 (UTC)