enow.com Web Search

  1. Ads

    related to: calculus finding critical numbers

Search results

  1. Results from the WOW.Com Content Network
  2. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    A critical value is the image under f of a critical point. These concepts may be visualized through the graph of f: at a critical point, the graph has a horizontal tangent if one can be assigned at all. Notice how, for a differentiable function, critical point is the same as stationary point.

  3. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    Finding global maxima and minima is the goal of mathematical optimization. If a function is continuous on a closed interval, then by the extreme value theorem, global maxima and minima exist. Furthermore, a global maximum (or minimum) either must be a local maximum (or minimum) in the interior of the domain, or must lie on the boundary of the ...

  4. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    The primary objects of study in differential calculus are the derivative of a function, related notions such as the differential, and their applications. The derivative of a function at a chosen input value describes the rate of change of the function near that input value. The process of finding a derivative is called differentiation.

  5. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    In calculus, a derivative test uses the derivatives of a function to locate the critical points of a function and determine whether each point is a local maximum, a local minimum, or a saddle point. Derivative tests can also give information about the concavity of a function.

  6. Cubic function - Wikipedia

    en.wikipedia.org/wiki/Cubic_function

    The sign of the expression Δ 0 = b 2 – 3ac inside the square root determines the number of critical points. If it is positive, then there are two critical points, one is a local maximum, and the other is a local minimum. If b 2 – 3ac = 0, then there is only one critical point, which is an inflection point.

  7. Rolle's theorem - Wikipedia

    en.wikipedia.org/wiki/Rolle's_theorem

    Then there is a number c in (a, b) such that the n th derivative of f at c is zero. The red curve is the graph of function with 3 roots in the interval [−3, 2] . Thus its second derivative (graphed in green) also has a root in the same interval.

  8. Saddle point - Wikipedia

    en.wikipedia.org/wiki/Saddle_point

    A saddle point (in red) on the graph of z = x 2 − y 2 (hyperbolic paraboloid). In mathematics, a saddle point or minimax point [1] is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. [2]

  9. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    For the general case of an arbitrary number n of variables, there are n sign conditions on the n principal minors of the Hessian matrix that together are equivalent to positive or negative definiteness of the Hessian (Sylvester's criterion): for a local minimum, all the principal minors need to be positive, while for a local maximum, the minors ...

  1. Ads

    related to: calculus finding critical numbers