enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    Euclid gave the definition of parallel lines in Book I, Definition 23 [2] just before the five postulates. [3] Euclidean geometry is the study of geometry that satisfies all of Euclid's axioms, including the parallel postulate. The postulate was long considered to be obvious or inevitable, but proofs were elusive.

  3. Elliptic geometry - Wikipedia

    en.wikipedia.org/wiki/Elliptic_geometry

    Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry , there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines are usually assumed to intersect at a single point (rather than two).

  4. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    The various attempted proofs of the parallel postulate produced a long list of theorems that are equivalent to the parallel postulate. Equivalence here means that in the presence of the other axioms of the geometry each of these theorems can be assumed to be true and the parallel postulate can be proved from this altered set of axioms.

  5. Saccheri quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Saccheri_Quadrilateral

    Saccheri quadrilaterals. A Saccheri quadrilateral is a quadrilateral with two equal sides perpendicular to the base.It is named after Giovanni Gerolamo Saccheri, who used it extensively in his 1733 book Euclides ab omni naevo vindicatus (Euclid freed of every flaw), an attempt to prove the parallel postulate using the method reductio ad absurdum.

  6. Non-Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Non-Euclidean_geometry

    In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry.As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises by either replacing the parallel postulate with an alternative, or relaxing the metric requirement.

  7. Geometry - Wikipedia

    en.wikipedia.org/wiki/Geometry

    As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises by either replacing the parallel postulate with an alternative, or relaxing the metric requirement. In the former case, one obtains hyperbolic geometry and elliptic geometry, the traditional non

  8. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    Parallel lines are the subject of Euclid's parallel postulate. [2] Parallelism is primarily a property of affine geometries and Euclidean geometry is a special instance of this type of geometry. In some other geometries, such as hyperbolic geometry , lines can have analogous properties that are referred to as parallelism.

  9. Giovanni Girolamo Saccheri - Wikipedia

    en.wikipedia.org/wiki/Giovanni_Girolamo_Saccheri

    The first led to the conclusion that straight lines are finite, contradicting Euclid's second postulate. So Saccheri correctly rejected it. However, the principle is now accepted as the basis of elliptic geometry, where both the second and fifth postulates are rejected. The second possibility turned out to be harder to refute.