Search results
Results from the WOW.Com Content Network
On a single-step or immediate-execution calculator, the user presses a key for each operation, calculating all the intermediate results, before the final value is shown. [1] [2] [3] On an expression or formula calculator, one types in an expression and then presses a key, such as "=" or "Enter", to evaluate the expression.
Each of the keys had up to four functions. In addition to the "normal function" printed on the key's face, a "gold" function printed on the case above the key and a "blue" function printed on the slanted front surface of the key were accessed by pushing the gold f or blue g prefix key, respectively.
The arrangement of digits on calculator and other numeric keypads with the 7-8-9 keys two rows above the 1-2-3 keys is derived from calculators and cash registers. It is notably different from the layout of telephone Touch-Tone keypads which have the 1-2-3 keys on top and 7-8-9 keys on the third row.
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
Modern scientific calculators generally have many more capabilities than the original four- or five-function calculator, and the capabilities differ between manufacturers and models. The capabilities of a modern scientific calculator include: Scientific notation; Floating-point decimal arithmetic; Logarithmic functions, using both base 10 and ...
The way it is done there is that we have two approximately Normal distributions (e.g., p1 and p2, for RR), and we wish to calculate their ratio. [b] However, the ratio of the expectations (means) of the two samples might also be of interest, while requiring more work to develop. The ratio of their means is:
If, on the other hand, we know the characteristic function φ and want to find the corresponding distribution function, then one of the following inversion theorems can be used. Theorem. If the characteristic function φ X of a random variable X is integrable, then F X is absolutely continuous, and therefore X has a probability density function.
Other examples of generating function variants include Dirichlet generating functions (DGFs), Lambert series, and Newton series. In this article we focus on transformations of generating functions in mathematics and keep a running list of useful transformations and transformation formulas.