enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic coordinates - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_coordinates

    The hyperbolic coordinates are formed on the original picture of G. de Saint-Vincent, which provided the quadrature of the hyperbola, and transcended the limits of algebraic functions. In 1875 Johann von Thünen published a theory of natural wages [ 1 ] which used geometric mean of a subsistence wage and market value of the labor using the ...

  3. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    Circle and hyperbola tangent at (1,1) display geometry of circular functions in terms of circular sector area u and hyperbolic functions depending on hyperbolic sector area u. The hyperbolic functions represent an expansion of trigonometry beyond the circular functions. Both types depend on an argument, either circular angle or hyperbolic angle.

  4. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. (The other conic sections are the parabola and the ellipse.

  5. Hyperbolic angle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_angle

    The curve represents xy = 1. A hyperbolic angle has magnitude equal to the area of the corresponding hyperbolic sector, which is in standard position if a = 1. In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane.

  6. Coordinate systems for the hyperbolic plane - Wikipedia

    en.wikipedia.org/wiki/Coordinate_systems_for_the...

    In the hyperbolic plane, as in the Euclidean plane, each point can be uniquely identified by two real numbers. Several qualitatively different ways of coordinatizing the plane in hyperbolic geometry are used. This article tries to give an overview of several coordinate systems in use for the two-dimensional hyperbolic plane.

  7. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    Comparison of elliptic, Euclidean and hyperbolic geometries in two dimensions. Hyperbolic geometry is more closely related to Euclidean geometry than it seems: the only axiomatic difference is the parallel postulate. When the parallel postulate is removed from Euclidean geometry the resulting geometry is absolute geometry. There are two kinds ...

  8. Split-complex number - Wikipedia

    en.wikipedia.org/wiki/Split-complex_number

    The contracted unit hyperbola {⁡ + ⁡:} of the split-complex plane has only half the area in the span of a corresponding hyperbolic sector. Such confusion may be perpetuated when the geometry of the split-complex plane is not distinguished from that of ⁠ R ⊕ R {\displaystyle \mathbb {R} \oplus \mathbb {R} } ⁠ .

  9. Hyperbolic triangle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_triangle

    Just as in the Euclidean case, three points of a hyperbolic space of an arbitrary dimension always lie on the same plane. Hence planar hyperbolic triangles also describe triangles possible in any higher dimension of hyperbolic spaces. An order-7 triangular tiling has equilateral triangles with 2π/7 radian internal angles.