Search results
Results from the WOW.Com Content Network
In computer operating systems, memory paging (or swapping on some Unix-like systems) is a memory management scheme by which a computer stores and retrieves data from secondary storage [a] for use in main memory. [1] In this scheme, the operating system retrieves data from secondary storage in same-size blocks called pages.
Similarly, a page frame is the smallest fixed-length contiguous block of physical memory into which memory pages are mapped by the operating system. [1] [2] [3] A transfer of pages between main memory and an auxiliary store, such as a hard disk drive, is referred to as paging or swapping. [4]
In operating systems that use virtual memory, every process is given the impression that it is working with large, contiguous sections of memory. Physically, the memory of each process may be dispersed across different areas of physical memory, or may have been moved ( paged out ) to secondary storage, typically to a hard disk drive (HDD) or ...
In computer operating systems, demand paging (as opposed to anticipatory paging) is a method of virtual memory management. In a system that uses demand paging, the operating system copies a disk page into physical memory only when an attempt is made to access it and that page is not already in memory (i.e., if a page fault occurs).
This is known as demand paging. Some simpler real-time operating systems do not support virtual memory and do not need an MMU, but still need a hardware memory protection unit. Modern MMUs generally perform additional memory-related tasks as well.
The first-in, first-out (FIFO) page replacement algorithm is a low-overhead algorithm that requires little bookkeeping on the part of the operating system. The idea is obvious from the name – the operating system keeps track of all the pages in memory in a queue, with the most recent arrival at the back, and the oldest arrival in front.
Therefore, the total time for paging is near 8 ms (= 8,000 μs). If the memory access time is 0.2 μs, then the page fault would make the operation about 40,000 times slower. Performance optimization of programs or operating systems often involves reducing the number
The operating system keeps a page cache in otherwise unused portions of the main memory (RAM), resulting in quicker access to the contents of cached pages and overall performance improvements. A page cache is implemented in kernels with the paging memory management, and is mostly transparent to applications.