Search results
Results from the WOW.Com Content Network
The set {x: x is a prime number greater than 10} is a proper subset of {x: x is an odd number greater than 10} The set of natural numbers is a proper subset of the set of rational numbers; likewise, the set of points in a line segment is a proper subset of the set of points in a line.
If A is a subset of B, then one can also say that B is a superset of A, that A is contained in B, or that B contains A. In symbols, A ⊆ B means that A is a subset of B, and B ⊇ A means that B is a superset of A. Some authors use the symbols ⊂ and ⊃ for subsets, and others use these symbols only for proper subsets. For clarity, one can ...
In his controversial 1878 paper, Cantor explicitly defined the notion of "power" of sets and used it to prove that the set of all natural numbers and the set of all rational numbers are equinumerous (an example where a proper subset of an infinite set is equinumerous to the original set), and that the Cartesian product of even a ...
2. A proper subset of a set X is a subset not equal to X. 3. A proper forcing is a forcing notion that does not collapse any stationary set 4. The proper forcing axiom asserts that if P is proper and D α is a dense subset of P for each α<ω 1, then there is a filter G P such that D α ∩ G is nonempty for all α<ω 1
For instance, had been declared as a subset of , with the sets and not necessarily related to each other in any way, then would likely mean instead of . If it is needed then unless indicated otherwise, it should be assumed that X {\displaystyle X} denotes the universe set , which means that all sets that are used in the formula are subsets of X ...
However, these definitions characterize distinct classes since there are uncountably many subsets of the natural numbers that can be enumerated by an arbitrary function with domain ω and only countably many computable functions. A specific example of a set with an enumeration but not a computable enumeration is the complement of the halting set.
A is called a proper subset of B if and only if A is a subset of B, but A is not equal to B. Also, 1, 2, and 3 are members (elements) of the set {1, 2, 3}, but are not subsets of it; and in turn, the subsets, such as {1}, are not members of the set {1, 2, 3}. More complicated relations can exist; for example, the set {1} is both a member and a ...
A proper subgroup of a group G is a subgroup H which is a proper subset of G (that is, H ≠ G). This is often represented notationally by H < G, read as "H is a proper subgroup of G". Some authors also exclude the trivial group from being proper (that is, H ≠ {e} ). [2] [3] If H is a subgroup of G, then G is sometimes called an overgroup of H.