enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sum of normally distributed random variables - Wikipedia

    en.wikipedia.org/wiki/Sum_of_normally...

    This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]

  3. Independent and identically distributed random variables

    en.wikipedia.org/wiki/Independent_and...

    The i.i.d. assumption is also used in the central limit theorem, which states that the probability distribution of the sum (or average) of i.i.d. variables with finite variance approaches a normal distribution. [4] The i.i.d. assumption frequently arises in the context of sequences of random variables. Then, "independent and identically ...

  4. Cramér's decomposition theorem - Wikipedia

    en.wikipedia.org/wiki/Cramér's_decomposition...

    Let a random variable ξ be normally distributed and admit a decomposition as a sum ξ=ξ 1 +ξ 2 of two independent random variables. Then the summands ξ 1 and ξ 2 are normally distributed as well. A proof of Cramér's decomposition theorem uses the theory of entire functions.

  5. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  6. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate. Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known.

  7. Algebra of random variables - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_random_variables

    Product distribution; Mellin transform; Sum of normally distributed random variables; List of convolutions of probability distributions – the probability measure of the sum of independent random variables is the convolution of their probability measures. Law of total expectation; Law of total variance; Law of total covariance; Law of total ...

  8. Illustration of the central limit theorem - Wikipedia

    en.wikipedia.org/wiki/Illustration_of_the...

    Both involve the sum of independent and identically-distributed random variables and show how the probability distribution of the sum approaches the normal distribution as the number of terms in the sum increases. The first illustration involves a continuous probability distribution, for which the random variables have a probability density ...

  9. Wald's equation - Wikipedia

    en.wikipedia.org/wiki/Wald's_equation

    In its simplest form, it relates the expectation of a sum of randomly many finite-mean, independent and identically distributed random variables to the expected number of terms in the sum and the random variables' common expectation under the condition that the number of terms in the sum is independent of the summands.