Search results
Results from the WOW.Com Content Network
An equivalent condition is that opposite sides are parallel (a square is a parallelogram), and that the diagonals perpendicularly bisect each other and are of equal length. A quadrilateral is a square if and only if it is both a rhombus and a rectangle (i.e., four equal sides and four equal angles).
These segments are called its edges or sides, and the points where two of the edges meet are the polygon's vertices (singular: vertex) or corners. The word polygon comes from Late Latin polygōnum (a noun), from Greek πολύγωνον ( polygōnon/polugōnon ), noun use of neuter of πολύγωνος ( polygōnos/polugōnos , the masculine ...
This page was last edited on 26 October 2024, at 19:22 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Full symmetry of the square is r8 and no symmetry is labeled a1. The square has Dih 4 symmetry, order 8. There are 2 dihedral subgroups: Dih 2, Dih 1, and 3 cyclic subgroups: Z 4, Z 2, and Z 1. A square is a special case of many lower symmetry quadrilaterals: A rectangle with two adjacent equal sides; A quadrilateral with four equal sides and ...
The dual polygon of a rhombus is a rectangle: [12] A rhombus has all sides equal, while a rectangle has all angles equal. A rhombus has opposite angles equal, while a rectangle has opposite sides equal. A rhombus has an inscribed circle, while a rectangle has a circumcircle.
A crossed rectangle is a crossed (self-intersecting) quadrilateral which consists of two opposite sides of a rectangle along with the two diagonals [4] (therefore only two sides are parallel). It is a special case of an antiparallelogram , and its angles are not right angles and not all equal, though opposite angles are equal.
Polygon decomposition is applied in several areas: [1] Pattern recognition techniques extract information from an object in order to describe, identify or classify it. An established strategy for recognising a general polygonal object is to decompose it into simpler components, then identify the components and their interrelationships and use this information to determine the shape of the object.
There are 3 subgroup dihedral symmetries: Dih 5, Dih 2, and Dih 1, and 4 cyclic group symmetries: Z 10, Z 5, Z 2, and Z 1. These 8 symmetries can be seen in 10 distinct symmetries on the decagon, a larger number because the lines of reflections can either pass through vertices or edges. John Conway labels these by a letter and group order. [7]