Search results
Results from the WOW.Com Content Network
In category theory, a branch of mathematics, an initial object of a category C is an object I in C such that for every object X in C, there exists precisely one morphism I → X. The dual notion is that of a terminal object (also called terminal element): T is terminal if for every object X in C there exists exactly one morphism X → T.
Examples of limits and colimits in Ring include: The ring of integers Z is an initial object in Ring. The zero ring is a terminal object in Ring. The product in Ring is given by the direct product of rings. This is just the cartesian product of the underlying sets with addition and multiplication defined component-wise.
Let C be a category with finite products and a terminal object 1. A list object over an object A of C is: an object L A, a morphism o A : 1 → L A, and; a morphism s A : A × L A → L A; such that for any object B of C with maps b : 1 → B and t : A × B → B, there exists a unique f : L A → B such that the following diagram commutes:
If A is an object of C, then the functor from C to Set that sends X to Hom C (X,A) (the set of morphisms in C from X to A) is an example of such a functor. If C is a small category (i.e. the collection of its objects forms a set), then the contravariant functors from C to Set, together with natural transformations as morphisms, form a new ...
Dually, a final coalgebra is a terminal object in the category of F-coalgebras. The finality provides a general framework for coinduction and corecursion. For example, using the same functor 1 + (−) as before, a coalgebra is defined as a set X together with a function f : X → (1 + X).
As a rule of thumb, an equivalence of categories preserves all "categorical" concepts and properties. If F : C → D is an equivalence, then the following statements are all true: the object c of C is an initial object (or terminal object, or zero object), if and only if Fc is an initial object (or terminal object, or zero object) of D
Each category is distinguished by properties that all its objects have in common, such as the empty set or the product of two topologies, yet in the definition of a category, objects are considered atomic, i.e., we do not know whether an object A is a set, a topology, or any other abstract concept. Hence, the challenge is to define special ...
For every category C, the free strict monoidal category Σ(C) can be constructed as follows: its objects are lists (finite sequences) A 1, ..., A n of objects of C; there are arrows between two objects A 1, ..., A m and B 1, ..., B n only if m = n, and then the arrows are lists (finite sequences) of arrows f 1: A 1 → B 1, ..., f n: A n → B ...