enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Calculus Made Easy - Wikipedia

    en.wikipedia.org/wiki/Calculus_Made_Easy

    Calculus Made Easy ignores the use of limits with its epsilon-delta definition, replacing it with a method of approximating (to arbitrary precision) directly to the correct answer in the infinitesimal spirit of Leibniz, now formally justified in modern nonstandard analysis and smooth infinitesimal analysis.

  3. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.

  4. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    In calculus, the product rule (or Leibniz rule [1] or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions.For two functions, it may be stated in Lagrange's notation as () ′ = ′ + ′ or in Leibniz's notation as () = +.

  5. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The derivatives in the table above are for when the range of the inverse secant is [,] and when the range of the inverse cosecant is [,]. It is common to additionally define an inverse tangent function with two arguments , arctan ⁡ ( y , x ) {\textstyle \arctan(y,x)} .

  6. Absolutely and completely monotonic functions and sequences

    en.wikipedia.org/wiki/Absolutely_and_completely...

    In the case of a completely monotonic function, the function and its derivatives must be alternately non-negative and non-positive in its domain of definition which would imply that function and its derivatives are alternately monotonically increasing and monotonically decreasing functions.

  7. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    Geometrically, the derivative at a point is the slope of the tangent line to the graph of the function at that point, provided that the derivative exists and is defined at that point. For a real-valued function of a single real variable, the derivative of a function at a point generally determines the best linear approximation to the function ...

  8. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    A number of properties of the differential follow in a straightforward manner from the corresponding properties of the derivative, partial derivative, and total derivative. These include: [ 11 ] Linearity : For constants a and b and differentiable functions f and g , d ( a f + b g ) = a d f + b d g . {\displaystyle d(af+bg)=a\,df+b\,dg.}

  9. Differential (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Differential_(mathematics)

    This can be motivated by the algebro-geometric point of view on the derivative of a function f from R to R at a point p. For this, note first that f − f(p) belongs to the ideal I p of functions on R which vanish at p. If the derivative f vanishes at p, then f − f(p) belongs to the square I p 2 of this ideal.