enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Random close pack - Wikipedia

    en.wikipedia.org/wiki/Random_close_pack

    Random close packing (RCP) of spheres is an empirical parameter used to characterize the maximum volume fraction of solid objects obtained when they are packed randomly. For example, when a solid container is filled with grain, shaking the container will reduce the volume taken up by the objects, thus allowing more grain to be added to the container.

  3. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    An a × b rectangle can be packed with 1 × n strips if and only if n divides a or n divides b. [15] [16] de Bruijn's theorem: A box can be packed with a harmonic brick a × a b × a b c if the box has dimensions a p × a b q × a b c r for some natural numbers p, q, r (i.e., the box is a multiple of the brick.) [15]

  4. Atomic packing factor - Wikipedia

    en.wikipedia.org/wiki/Atomic_packing_factor

    where N particle is the number of particles in the unit cell, V particle is the volume of each particle, and V unit cell is the volume occupied by the unit cell. It can be proven mathematically that for one-component structures, the most dense arrangement of atoms has an APF of about 0.74 (see Kepler conjecture), obtained by the close-packed ...

  5. Interstitial site - Wikipedia

    en.wikipedia.org/wiki/Interstitial_site

    A close packed unit cell, both face-centered cubic and hexagonal close packed, can form two different shaped holes. Looking at the three green spheres in the hexagonal packing illustration at the top of the page, they form a triangle-shaped hole. If an atom is arranged on top of this triangular hole it forms a tetrahedral interstitial hole.

  6. Crystal structure - Wikipedia

    en.wikipedia.org/wiki/Crystal_structure

    This type of structural arrangement is known as cubic close packing (ccp). The unit cell of a ccp arrangement of atoms is the face-centered cubic (fcc) unit cell. This is not immediately obvious as the closely packed layers are parallel to the {111} planes of the fcc unit cell. There are four different orientations of the close-packed layers.

  7. Sphere packing - Wikipedia

    en.wikipedia.org/wiki/Sphere_packing

    Here there is a choice between separating the spheres into regions of close-packed equal spheres, or combining the multiple sizes of spheres into a compound or interstitial packing. When many sizes of spheres (or a distribution ) are available, the problem quickly becomes intractable, but some studies of binary hard spheres (two sizes) are ...

  8. Frank–Kasper phases - Wikipedia

    en.wikipedia.org/wiki/Frank–Kasper_phases

    Projection of unit cell of sigma phase with CrFe structure along c axis Unit cell of μ phase with W 6 Fe 7 structure projected along c-axis. Topologically close pack ( TCP ) phases , also known as Frank-Kasper (FK) phases , are one of the largest groups of intermetallic compounds, known for their complex crystallographic structure and physical ...

  9. Close-packing of equal spheres - Wikipedia

    en.wikipedia.org/wiki/Close-packing_of_equal_spheres

    The same packing density can also be achieved by alternate stackings of the same close-packed planes of spheres, including structures that are aperiodic in the stacking direction. The Kepler conjecture states that this is the highest density that can be achieved by any arrangement of spheres, either regular or irregular.